Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Opportunities and challenges of radiotherapy for treating cancer

Key Points

  • Radiotherapy needs a paradigm shift to include biological interventions that are tailored to radiation-related phenomena

  • DNA-repair mechanisms are obvious targets for interventions aimed at improving the radiotherapeutic benefit

  • Chromatin structure and nuclear architecture critically influence the dynamics and extent of DNA damage and repair, and thus the response to radiation

  • Cells exist along a wide spectrum of radiation responsiveness, with cancer stem cells generally being radioresistant

  • Radiation therapy can be an antitumour immune adjuvant and new approaches to immunotherapy will offer the opportunity to exploit this interaction

  • Biomarkers that are redox-related or immune-related might help evaluate the status of patients with cancer and provide insight into how best to combine radiotherapy with biological treatments in each individual

Abstract

The past 20 years have seen dramatic changes in the delivery of radiation therapy, but the impact of radiobiology on the clinic has been far less substantial. A major consideration in the use of radiotherapy has been on how best to exploit differences between the tumour and host tissue characteristics, which in the past has been achieved empirically by radiation-dose fractionation. New advances are uncovering some of the mechanistic processes that underlie this success story. In this Review, we focus on how these processes might be targeted to improve the outcome of radiotherapy at the individual patient level. This approach would seem a more productive avenue of treatment than simply trying to increase the radiation dose delivered to the tumour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of the cell-cycle phase on radiosensitivity and on the DNA-repair pathway that is utilized.
Figure 2: Possible mechanisms by which PARP-1 inhibitors might interact with radiation-induced DNA damage for therapeutic benefit.
Figure 3: Redox and how it might influence both radiation responses and the immune system.

Similar content being viewed by others

References

  1. Thariat, J., Hannoun-Levi, J. M., Sun Myint, A., Vuong, T. & Gerard, J. P. Past, present, and future of radiotherapy for the benefit of patients. Nat. Rev. Clin. Oncol. 10, 52–60 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Loeffler, J. S. & Durante, M. Charged particle therapy–optimization, challenges and future directions. Nat. Rev. Clin. Oncol. 10, 411–424 (2013).

    Article  PubMed  Google Scholar 

  3. Lo, S. S. et al. Stereotactic body radiation therapy: a novel treatment modality. Nat. Rev. Clin. Oncol. 7, 44–54 (2010).

    Article  PubMed  Google Scholar 

  4. Withers, H. R. The 4Rs of radiotherapy in Advances in Radiation Biology Vol. 5 (eds Lett, J. T. & Alder, H.) 241–249 (New York: Academic Press, 1975).

    Google Scholar 

  5. Steel, G. G., McMillan, T. J. & Peacock, J. H. The 5Rs of radiobiology. Int. J. Radiat. Biol. 56, 1045–1048 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Good, J. S. & Harrington, K. J. The hallmarks of cancer and the radiation oncologist: updating the 5Rs of radiobiology. Clin. Oncol. (R. Coll. Radiol.) 25, 569–577 (2013).

    Article  CAS  Google Scholar 

  7. Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 8, 193–204 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Chinnaiyan, P., Allen, G. W. & Harari, P. M. Radiation and new molecular agents, part II: targeting HDAC, HSP90, IGF-1R, PI3K, and Ras. Semin. Radiat. Oncol. 16, 59–64 (2006).

    Article  PubMed  Google Scholar 

  9. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fuks, Z. & Kolesnick, R. Engaging the vascular component of the tumor response. Cancer Cell 8, 89–91 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Masterson, L. et al. De-escalation treatment protocols for human papillomavirus-associated oropharyngeal squamous cell carcinoma. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD010271 http://dx.doi.org/10.1002/14651858.CD010271.pub2 (2014).

    Google Scholar 

  12. Lomax, M. E., Folkes, L. K. & O'Neill, P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 25, 578–585 (2013).

    Article  CAS  Google Scholar 

  13. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311 (1991).

    CAS  PubMed  Google Scholar 

  14. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wang, X. et al. Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol. Cell Biol. 27, 3098–3108 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bekker-Jensen, S. & Mailand, N. Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst.) 9, 1219–1228 (2010).

    Article  CAS  Google Scholar 

  18. Lieber, M. R. NHEJ and its backup pathways in chromosomal translocations. Nat. Struct. Mol. Biol. 17, 393–395 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lieber, M. R. & Wilson, T. E. SnapShot: nonhomologous DNA end joining (NHEJ). Cell 142, 496–496.e1 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Onn, I., Heidinger-Pauli, J. M., Guacci, V., Unal, E. & Koshland, D. E. Sister chromatid cohesion: a simple concept with a complex reality. Annu. Rev. Cell Dev. Biol. 24, 105–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Maréchal, A. & Zou, L. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res. 25, 9–23 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Moore, S., Stanley, F. K. & Goodarzi, A. A. The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation--no simple task. DNA Repair (Amst.) 17, 64–73 (2014).

    Article  CAS  Google Scholar 

  24. Takahashi, A. et al. Nonhomologous end-joining repair plays a more important role than homologous recombination repair in defining radiosensitivity after exposure to high-LET radiation. Radiat. Res. 182, 338–344 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Averbeck, N. B. et al. DNA end resection is needed for the repair of complex lesions in G1-phase human cells. Cell Cycle 13, 2509–2516 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Durante, M. New challenges in high-energy particle radiobiology. Br. J. Radiol. 87, 20130626 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Nakajima, N. I. et al. Pre-exposure to ionizing radiation stimulates DNA double strand break end resection, promoting the use of homologous recombination repair. PLoS ONE 10, e0122582 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shrivastav, M., De Haro, L. P. & Nickoloff, J. A. Regulation of DNA double-strand break repair pathway choice. Cell Res. 18, 134–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Hufnagl, A. et al. The link between cell-cycle dependent radiosensitivity and repair pathways: A model based on the local, sister-chromatid conformation dependent switch between NHEJ and HR. DNA Repair (Amst.) 27, 28–39 (2015).

    Article  CAS  Google Scholar 

  30. Aylon, Y., Liefshitz, B. & Kupiec, M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23, 4868–4875 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hentges, P., Waller, H., Reis, C. C., Ferreira, M. G. & Doherty, A. J. Cdk1 restrains NHEJ through phosphorylation of XRCC4-like factor Xlf1. Cell Rep. 9, 2011–2017 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sorensen, C. S. et al. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat. Cell Biol. 7, 195–201 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Bryant, C., Scriven, K. & Massey, A. J. Inhibition of the checkpoint kinase Chk1 induces DNA damage and cell death in human leukemia and lymphoma cells. Mol. Cancer 13, 147 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sears, C. R. & Turchi, J. J. Complex cisplatin-double strand break (DSB) lesions directly impair cellular non-homologous end-joining (NHEJ) independent of downstream damage response (DDR) pathways. J. Biol. Chem. 287, 24263–24272 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gibson, B. A. & Kraus, W. L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Noel, G. et al. Radiosensitization by the poly(ADP-ribose) polymerase inhibitor 4-amino-1,8-naphthalimide is specific of the S phase of the cell cycle and involves arrest of DNA synthesis. Mol. Cancer Ther. 5, 564–574 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Audeh, M. W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Koppensteiner, R. et al. Effect of MRE11 loss on PARP-inhibitor sensitivity in endometrial cancer in vitro. PLoS ONE 9, e100041 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wang, L. et al. MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation. Invest. New Drugs 30, 2113–2120 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Reiss, K. A. et al. A phase I study of veliparib (ABT-888) in combination with low-dose fractionated whole abdominal radiation therapy in patients with advanced solid malignancies and peritoneal carcinomatosis. Clin. Cancer Res. (2014).

  42. Chow, J. P. et al. PARP1 is overexpressed in nasopharyngeal carcinoma and its inhibition enhances radiotherapy. Mol. Cancer Ther. 12, 2517–2528 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Nowsheen, S., Bonner, J. A. & Yang, E. S. The poly(ADP-Ribose) polymerase inhibitor ABT-888 reduces radiation-induced nuclear EGFR and augments head and neck tumor response to radiotherapy. Radiother. Oncol. 99, 331–338 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chatterjee, P. et al. PARP inhibition sensitizes to low dose-rate radiation TMPRSS2–ERG fusion gene-expressing and PTEN-deficient prostate cancer cells. PLoS ONE 8, e60408 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Castri, P. et al. Poly(ADP-ribose) polymerase-1 and its cleavage products differentially modulate cellular protection through NF-κB-dependent signaling. Biochim. Biophys. Acta 1843, 640–651 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hunter, J. E. et al. NF-κB mediates radio-sensitization by the PARP-1 inhibitor, AG-014699. Oncogene 31, 251–264 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Feng, F. Y. et al. Targeted radiosensitization with PARP1 inhibition: optimization of therapy and identification of biomarkers of response in breast cancer. Breast Cancer Res. Treat. 147, 81–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. O'Shaughnessy, J. et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N. Engl. J. Med. 364, 205–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Patel, A. G., De Lorenzo, S. B., Flatten, K. S., Poirier, G. G. & Kaufmann, S. H. Failure of iniparib to inhibit poly(ADP-ribose) polymerase in vitro. Clin. Cancer Res. 18, 1655–1662 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Morgan, M. A., Parsels, L. A., Maybaum, J. & Lawrence, T. S. Improving the efficacy of chemoradiation with targeted agents. Cancer Discov. 4, 280–291 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Takata, H. et al. Chromatin compaction protects genomic DNA from radiation damage. PLoS ONE 8, e75622 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Chapman, J. D. et al. Condensed chromatin and cell inactivation by single-hit kinetics. Radiat. Res. 151, 433–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Chiolo, I. et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144, 732–744 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Storch, K. et al. Three-dimensional cell growth confers radioresistance by chromatin density modification. Cancer Res. 70, 3925–3934 (2010).

    Article  PubMed  Google Scholar 

  55. Jakob, B. et al. DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res. 39, 6489–6499 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Chiolo, I., Tang, J., Georgescu, W. & Costes, S. V. Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin. Mutat. Res. 750, 56–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Jezkova, L. et al. Function of chromatin structure and dynamics in DNA damage, repair and misrepair: gamma-rays and protons in action. Appl. Radiat. Isot. 83 (Pt B), 128–136 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Falk, M., Lukasova, E. & Kozubek, S. Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat. Res. 704, 88–100 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Frame, F. M. et al. HDAC inhibitor confers radiosensitivity to prostate stem-like cells. Br. J. Cancer 109, 3023–3033 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Pugh, J. L. et al. Histone deacetylation critically determines T cell subset radiosensitivity. J. Immunol. 193, 1451–1458 (2014).

    Article  PubMed  CAS  Google Scholar 

  61. Kruhlak, M. J., Celeste, A. & Nussenzweig, A. Monitoring DNA breaks in optically highlighted chromatin in living cells by laser scanning confocal microscopy. Methods Mol. Biol. 523, 125–140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Becker, A., Durante, M., Taucher-Scholz, G. & Jakob, B. ATM alters the otherwise robust chromatin mobility at sites of DNA double-strand breaks (DSBs) in human cells. PLoS ONE 9, e92640 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Goodarzi, A. A., Jeggo, P. & Lobrich, M. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. DNA Repair (Amst.) 9, 1273–1282 (2010).

    Article  CAS  Google Scholar 

  64. Goodarzi, A. A. & Jeggo, P. A. The heterochromatic barrier to DNA double strand break repair: how to get the entry visa. Int. J. Mol. Sci. 13, 11844–11860 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Iyengar, S. & Farnham, P. J. KAP1 protein: an enigmatic master regulator of the genome. J. Biol. Chem. 286, 26267–26276 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lee, D. H. et al. Phosphoproteomic analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO J. 31, 2403–2415 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Dimitrova, N., Chen, Y. C., Spector, D. L. & de Lange, T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456, 524–528 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Averbeck, N. B. & Durante, M. Protein acetylation within the cellular response to radiation. J. Cell Physiol. 226, 962–967 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Rosato, R. R. & Grant, S. Histone deacetylase inhibitors in cancer therapy. Cancer Biol. Ther. 2, 30–37 (2003).

    Article  PubMed  Google Scholar 

  70. Zhang, L. et al. Recent progress in the development of histone deacetylase inhibitors as anti-cancer agents. Mini Rev. Med. Chem. 13, 1999–2013 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Camphausen, K. et al. Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int. J. Cancer 114, 380–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Cerna, D., Camphausen, K. & Tofilon, P. J. Histone deacetylation as a target for radiosensitization. Curr. Top. Dev. Biol. 73, 173–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Shabason, J. E., Tofilon, P. J. & Camphausen, K. HDAC inhibitors in cancer care. Oncology (Williston Park) 24, 180–185 (2010).

    Google Scholar 

  74. Jung, M. et al. Novel HDAC inhibitors with radiosensitizing properties. Radiat. Res. 163, 488–493 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Konsoula, Z., Velena, A., Lee, R., Dritschilo, A. & Jung, M. Histone deacetylase inhibitor: antineoplastic agent and radiation modulator. Adv. Exp. Med. Biol. 720, 171–179 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Chinnaiyan, P. et al. Postradiation sensitization of the histone deacetylase inhibitor valproic acid. Clin. Cancer Res. 14, 5410–5415 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Karagiannis, T. C., Kn, H. & El-Osta, A. The epigenetic modifier, valproic acid, enhances radiation sensitivity. Epigenetics 1, 131–137 (2006).

    Article  PubMed  Google Scholar 

  78. Noguchi, H. et al. Successful treatment of anaplastic thyroid carcinoma with a combination of oral valproic acid, chemotherapy, radiation and surgery. Endocr. J. 56, 245–249 (2009).

    Article  PubMed  Google Scholar 

  79. Ree, A. H. et al. Vorinostat, a histone deacetylase inhibitor, combined with pelvic palliative radiotherapy for gastrointestinal carcinoma: the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study. Lancet Oncol. 11, 459–464 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, H. P., Zhao, Y. T. & Zhao, T. C. Histone deacetylases and mechanisms of regulation of gene expression. Crit. Rev. Oncog. 20, 35–47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ren, J. et al. HDAC as a therapeutic target for treatment of endometrial cancers. Curr. Pharm. Des. 20, 1847–1856 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Nakajima, S. & Kitamura, M. Bidirectional regulation of NF-κB by reactive oxygen species: a role of unfolded protein response. Free Radic. Biol. Med. 65, 162–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Yoon, J. Y., Ishdorj, G., Graham, B. A., Johnston, J. B. & Gibson, S. B. Valproic acid enhances fludarabine-induced apoptosis mediated by ROS and involving decreased AKT and ATM activation in B-cell-lymphoid neoplastic cells. Apoptosis 19, 191–200 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Jeong, S. G. & Cho, G. W. Trichostatin a modulates intracellular reactive oxygen species through SOD2 and FOXO1 in human bone marrow-mesenchymal stem cells. Cell Biochem. Funct. 33, 37–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Park, S. et al. Suberoylanilide hydroxamic acid induces ROS-mediated cleavage of HSP90 in leukemia cells. Cell Stress Chaperones 20, 149–157 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Wolf, I. M. et al. Histone deacetylases inhibition by SAHA/vorinostat normalizes the glioma microenvironment via xCT equilibration. Sci. Rep. 4, 6226 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sholler, G. S. et al. PCI-24781 (abexinostat), a novel histone deacetylase inhibitor, induces reactive oxygen species-dependent apoptosis and is synergistic with bortezomib in neuroblastoma. J. Cancer Ther. Res. 2, 21 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, H. et al. The HDAC inhibitor depsipeptide transactivates the p53/p21 pathway by inducing DNA damage. DNA Repair (Amst.) 11, 146–156 (2012).

    Article  CAS  Google Scholar 

  90. Blattmann, C. et al. Enhancement of radiation response in osteosarcoma and rhabdomyosarcoma cell lines by histone deacetylase inhibition. Int. J. Radiat. Oncol. Biol. Phys. 78, 237–245 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Kachhap, S. K. et al. Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor. PLoS ONE 5, e11208 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ren, J. et al. Epigenetic interventions increase the radiation sensitivity of cancer cells. Curr. Pharm. Des. 20, 1857–1865 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Brown, S. L., Kolozsvary, A., Liu, J., Ryu, S. & Kim, J. H. Histone deacetylase inhibitors protect against and mitigate the lethality of total-body irradiation in mice. Radiat. Res. 169, 474–478 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Grabiec, A. M., Tak, P. P. & Reedquist, K. A. Function of histone deacetylase inhibitors in inflammation. Crit. Rev. Immunol. 31, 233–263 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Kim, H. J. & Chuang, D. M. HDAC inhibitors mitigate ischemia-induced oligodendrocyte damage: potential roles of oligodendrogenesis, VEGF, and anti-inflammation. Am. J. Transl. Res. 6, 206–223 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Felice, C., Lewis, A., Armuzzi, A., Lindsay, J. O. & Silver, A. Review article: selective histone deacetylase isoforms as potential therapeutic targets in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 41, 26–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Morris, Z. S. & Harari, P. M. Interaction of radiation therapy with molecular targeted agents. J. Clin. Oncol. 32, 2886–2893 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Chen, D. J. & Nirodi, C. S. The epidermal growth factor receptor: a role in repair of radiation-induced DNA damage. Clin. Cancer Res. 13, 6555–6560 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Kim, K. et al. Epidermal growth factor receptor vIII expression in U87 glioblastoma cells alters their proteasome composition, function, and response to irradiation. Mol. Cancer Res. 6, 426–434 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Baumann, M. et al. EGFR-targeted anti-cancer drugs in radiotherapy: preclinical evaluation of mechanisms. Radiother. Oncol. 83, 238–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Bonner, J. A. et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 11, 21–28 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Ang, K. K. et al. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J. Clin. Oncol. 32, 2940–2950 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Debucquoy, A., Machiels, J. P., McBride, W. H. & Haustermans, K. Integration of epidermal growth factor receptor inhibitors with preoperative chemoradiation. Clin. Cancer Res. 16, 2709–2714 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Kriegs, M. et al. Radiosensitization of NSCLC cells by EGFR inhibition is the result of an enhanced p53-dependent G1 arrest. Radiother. Oncol. http://dx.doi.org/10.1016/j.radonc.2015.02.018 (2015).

  106. Dent, P. et al. Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat. Res. 159, 283–300 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Liccardi, G., Hartley, J. A. & Hochhauser, D. EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment. Cancer Res. 71, 1103–1114 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Knebel, A., Rahmsdorf, H. J., Ullrich, A. & Herrlich, P. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J. 15, 5314–5325 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Schmidt-Ullrich, R. K. et al. Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 15, 1191–1197 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Kim, J., Adam, R. M. & Freeman, M. R. Trafficking of nuclear heparin-binding epidermal growth factor-like growth factor into an epidermal growth factor receptor-dependent autocrine loop in response to oxidative stress. Cancer Res. 65, 8242–8249 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Kefaloyianni, E., Gaitanaki, C. & Beis, I. ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-κB transactivation during oxidative stress in skeletal myoblasts. Cell Signal. 18, 2238–2251 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Papaiahgari, S., Zhang, Q., Kleeberger, S. R., Cho, H. Y. & Reddy, S. P. Hyperoxia stimulates an Nrf2-ARE transcriptional response via ROS–EGFR–PI3K–Akt/ERK MAP kinase signaling in pulmonary epithelial cells. Antioxid. Redox Signal. 8, 43–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Han, W. & Lo, H. W. Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations. Cancer Lett. 318, 124–134 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Dittmann, K. et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J. Biol. Chem. 280, 31182–31189 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Dittmann, K., Mayer, C. & Rodemann, H. P. Nuclear EGFR as novel therapeutic target: insights into nuclear translocation and function. Strahlenther. Onkol. 186, 1–6 (2010).

    Article  PubMed  Google Scholar 

  116. Liccardi, G., Hartley, J. A. & Hochhauser, D. Importance of EGFR/ERCC1 interaction following radiation-induced DNA damage. Clin. Cancer Res. 20, 3496–3506 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Javvadi, P. et al. Threonine 2609 phosphorylation of the DNA-dependent protein kinase is a critical prerequisite for epidermal growth factor receptor-mediated radiation resistance. Mol. Cancer Res. 10, 1359–1368 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kim, I. A. et al. Epigenetic modulation of radiation response in human cancer cells with activated EGFR or HER-2 signaling: potential role of histone deacetylase 6. Radiother. Oncol. 92, 125–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Dittmann, K., Mayer, C., Rodemann, H. P. & Huber, S. M. EGFR cooperates with glucose transporter SGLT1 to enable chromatin remodeling in response to ionizing radiation. Radiother. Oncol. 107, 247–251 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Dittmann, K. et al. Nuclear epidermal growth factor receptor modulates cellular radio-sensitivity by regulation of chromatin access. Radiother. Oncol. 99, 317–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Vlashi, E., McBride, W. H. & Pajonk, F. Radiation responses of cancer stem cells. J. Cell Biochem. 108, 339–342 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Vlashi, E. & Pajonk, F. Targeted cancer stem cell therapies start with proper identification of the target. Mol. Cancer Res. 8, 291 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Phillips, T. M., McBride, W. H. & Pajonk, F. The response of CD24−/low/CD44+ breast cancer-initiating cells to radiation. J. Natl Cancer Inst. 98, 1777–1785 (2006).

    Article  PubMed  Google Scholar 

  124. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Woodward, W. A. et al. WNT/β-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc. Natl Acad. Sci. USA 104, 618–623 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kim, Y., Joo, K. M., Jin, J. & Nam, D. H. Cancer stem cells and their mechanism of chemo-radiation resistance. Int. J. Stem Cells 2, 109–114 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Rich, J. N. Cancer stem cells in radiation resistance. Cancer Res. 67, 8980–8984 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Bourguignon, L. Y., Shiina, M. & Li, J. J. Hyaluronan–CD44 interaction promotes oncogenic signaling, microRNA functions, chemoresistance, and radiation resistance in cancer stem cells leading to tumor progression. Adv. Cancer Res. 123, 255–275 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. McCord, A. M., Jamal, M., Williams, E. S., Camphausen, K. & Tofilon, P. J. CD133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines. Clin. Cancer Res. 15, 5145–5153 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Zielske, S. P., Spalding, A. C., Wicha, M. S. & Lawrence, T. S. Ablation of breast cancer stem cells with radiation. Transl. Oncol. 4, 227–233 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Vlashi, E. et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc. Natl Acad. Sci. USA 108, 16062–16067 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Zafarana, G. & Bristow, R. G. Tumor senescence and radioresistant tumor-initiating cells (TICs): let sleeping dogs lie! Breast Cancer Res. 12, 111 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Dong, Q. et al. Radioprotective effects of BMI-1 involve epigenetic silencing of oxidase genes and enhanced DNA repair in normal human keratinocytes. J. Invest. Dermatol. 131, 1216–1225 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Pignalosa, D. & Durante, M. Overcoming resistance of cancer stem cells. Lancet Oncol. 13, e187–e188 (2012).

    Article  PubMed  Google Scholar 

  136. Chen, T. et al. Effects of heterochromatin in colorectal cancer stem cells on radiosensitivity. Chin. J Cancer 29, 270–276 (2010).

    Article  PubMed  Google Scholar 

  137. Vlashi, E. & Pajonk, F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin. Cancer Biol. 31, 28–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Lagadec, C., Vlashi, E., Della Donna, L., Dekmezian, C. & Pajonk, F. Radiation-induced reprogramming of breast cancer cells. Stem Cells 30, 833–844 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Shoshani, O. & Zipori, D. Stress as a fundamental theme in cell plasticity. Biochim. Biophys. Acta 1849, 371–377 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Chlon, T. M. et al. High-risk human papillomavirus E6 protein promotes reprogramming of Fanconi anemia patient cells through repression of p53 but does not allow for sustained growth of induced pluripotent stem cells. J. Virol. 88, 11315–11326 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Gomez-Casal, R. et al. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol. Cancer 12, 94 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Patel, S. S., Shah, K. A., Shah, M. J., Kothari, K. C. & Rawal, R. M. Cancer stem cells and stemness markers in oral squamous cell carcinomas. Asian Pac. J. Cancer Prev. 15, 8549–8556 (2014).

    Article  PubMed  Google Scholar 

  143. Venere, M. et al. Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells. Cell Death Differ. 21, 258–269 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Gilabert, M. et al. Poly(ADP-ribose) polymerase 1 (PARP1) overexpression in human breast cancer stem cells and resistance to olaparib. PLoS ONE 9, e104302 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Yoshikawa, M. et al. xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res. 73, 1855–1866 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Greenow, K. & Clarke, A. R. Controlling the stem cell compartment and regeneration in vivo: the role of pluripotency pathways. Physiol. Rev. 92, 75–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Takebe, N. et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol. http://dx.doi.org/10.1038/nrclinonc.2015.61 (2015).

  148. Mizugaki, H. et al. γ-secretase inhibitor enhances antitumour effect of radiation in Notch-expressing lung cancer. Br. J. Cancer 106, 1953–1959 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Lin, J., Zhang, X. M., Yang, J. C., Ye, Y. B. & Luo, S. Q. γ-secretase inhibitor-I enhances radiosensitivity of glioblastoma cell lines by depleting CD133+ tumor cells. Arch. Med. Res. 41, 519–529 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Lagadec, C. et al. Radiation-induced Notch signaling in breast cancer stem cells. Int. J. Radiat. Oncol. Biol. Phys. 87, 609–618 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Diaz-Padilla, I. et al. A phase Ib combination study of RO4929097, a γ-secretase inhibitor, and temsirolimus in patients with advanced solid tumors. Invest. New Drugs 31, 1182–1191 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. De Strooper, B. & Chavez Gutierrez, L. Learning by failing: ideas and concepts to tackle γ-secretases in Alzheimer disease and beyond. Annu. Rev. Pharmacol. Toxicol. 55, 419–437 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Kim, S. H., Kim, J. H. & Fried, J. Enhancement of the radiation response of cultured tumor cells by chloroquine. Cancer 32, 536–540 (1973).

    Article  CAS  PubMed  Google Scholar 

  154. Firat, E., Weyerbrock, A., Gaedicke, S., Grosu, A. L. & Niedermann, G. Chloroquine or chloroquine–PI3K/Akt pathway inhibitor combinations strongly promote gamma-irradiation-induced cell death in primary stem-like glioma cells. PLoS ONE 7, e47357 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Maycotte, P. & Thorburn, A. Targeting autophagy in breast cancer. World J. Clin. Oncol. 5, 224–240 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Ratikan, J. A., Sayre, J. W. & Schaue, D. Chloroquine engages the immune system to eradicate irradiated breast tumors in mice. Int. J. Radiat. Oncol. Biol. Phys. 87, 761–768 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Balic, A. et al. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling. Mol. Cancer Ther. 13, 1758–1771 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Xiao, W. et al. CD44 is a biomarker associated with human prostate cancer radiation sensitivity. Clin. Exp. Metastasis 29, 1–9 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Ni, J. et al. CD44 variant 6 is associated with prostate cancer metastasis and chemo-/radioresistance. Prostate 74, 602–617 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Timmerman, L. A. et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24, 450–465 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Wang, F. & Yang, Y. Suppression of the xCT–CD44v antiporter system sensitizes triple-negative breast cancer cells to doxorubicin. Breast Cancer Res. Treat. 147, 203–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Takeuchi, S. et al. Sulfasalazine and temozolomide with radiation therapy for newly diagnosed glioblastoma. Neurol. India 62, 42–47 (2014).

    Article  PubMed  Google Scholar 

  163. McDonald, J. T. et al. Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res. 70, 8886–8895 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Bauer, A. K., Hill, T. 3rd & Alexander, C. M. The involvement of NRF2 in lung cancer. Oxid. Med. Cell Longev. 2013, 746432 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Hast, B. E. et al. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination. Cancer Res. 74, 808–817 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Tao, S. et al. Oncogenic KRAS confers chemoresistance by upregulating NRF2. Cancer Res. 74, 7430–7441 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49, 1603–1616 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Hayes, J. D. & Dinkova-Kostova, A. T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39, 199–218 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Buettner, G. R., Wagner, B. A. & Rodgers, V. G. Quantitative redox biology: an approach to understand the role of reactive species in defining the cellular redox environment. Cell Biochem. Biophys. 67, 477–483 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Ma, T. et al. Dual-functional probes for sequential thiol and redox homeostasis sensing in live cells. Analyst 140, 322–329 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Kruger, A. & Ralser, M. ATM is a redox sensor linking genome stability and carbon metabolism. Sci. Signal. 4, pe17 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Perry, J. J. & Tainer, J. A. All stressed out without ATM kinase. Sci. Signal. 4, pe18 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Shirwany, N. A. & Zou, M. H. AMPK: a cellular metabolic and redox sensor. A minireview. Front. Biosci. (Landmark Ed.) 19, 447–474 (2014).

    Article  CAS  Google Scholar 

  174. McBride, W. H. et al. A sense of danger from radiation. Radiat. Res. 162, 1–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Vazquez-Martin, A. et al. Repositioning chloroquine and metformin to eliminate cancer stem cell traits in pre-malignant lesions. Drug Resist. Updat. 14, 212–223 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Najbauer, J., Kraljik, N. & Nemeth, P. Glioma stem cells: markers, hallmarks and therapeutic targeting by metformin. Pathol. Oncol. Res. 20, 789–797 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Skinner, H. D. et al. Metformin use and improved response to therapy in rectal cancer. Cancer Med. 2, 99–107 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Spratt, D. E. et al. Metformin and prostate cancer: reduced development of castration-resistant disease and prostate cancer mortality. Eur. Urol. 63, 709–716 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Skinner, H. D. et al. Metformin use and improved response to therapy in esophageal adenocarcinoma. Acta Oncol. 52, 1002–1009 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Ferro, A. et al. Evaluation of diabetic patients with breast cancer treated with metformin during adjuvant radiotherapy. Int. J. Breast Cancer 2013, 659723 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Eckers, J. C., Kalen, A. L., Xiao, W., Sarsour, E. H. & Goswami, P. C. Selenoprotein P inhibits radiation-induced late reactive oxygen species accumulation and normal cell injury. Int. J. Radiat. Oncol. Biol. Phys. 87, 619–625 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Gao, Z. et al. Late ROS accumulation and radiosensitivity in SOD1-overexpressing human glioma cells. Free Radic. Biol. Med. 45, 1501–1509 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Le, O. N. et al. Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell 9, 398–409 (2010).

    Article  PubMed  CAS  Google Scholar 

  184. Sabin, R. J. & Anderson, R. M. Cellular Senescence—its role in cancer and the response to ionizing radiation. Genome Integr. 2, 7 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Rodier, F. et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J. Cell Sci. 124, 68–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Durante, M., Reppingen, N. & Held, K. D. Immunologically augmented cancer treatment using modern radiotherapy. Trends Mol. Med. 19, 565–582 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Coppe, J. P. et al. Tumor suppressor and aging biomarker p16INK4a induces cellular senescence without the associated inflammatory secretory phenotype. J. Biol. Chem. 286, 36396–36403 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Westbrook, A. M. et al. The role of tumour necrosis factor-alpha and tumour necrosis factor receptor signalling in inflammation-associated systemic genotoxicity. Mutagenesis 27, 77–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Schaue, D. & McBride, W. H. Links between innate immunity and normal tissue radiobiology. Radiation Res. 173, 406–417 (2010).

    Article  CAS  PubMed  Google Scholar 

  190. Kansara, M. et al. Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation. J. Clin. Invest. 123, 5351–5360 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Klammer, H., Mladenov, E., Li, F. & Iliakis, G. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status. Cancer Lett. 356, 58–71 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Kim, K. et al. High throughput screening of small molecule libraries for modifiers of radiation responses. Int. J. Radiat. Biol. 87, 839–845 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Demaria, S., Bhardwaj, N., McBride, W. H. & Formenti, S. C. Combining radiotherapy and immunotherapy: a revived partnership. Int. J. Radiat. Oncol. Biol. Phys. 63, 655–666 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Formenti, S. C. & Demaria, S. Radiation therapy to convert the tumor into an in situ vaccine. Int. J. Radiat. Oncol. Biol. Phys. 84, 879–880 (2012).

    Article  PubMed  Google Scholar 

  195. Schaue, D., Ratikan, J. A., Iwamoto, K. S. & McBride, W. H. Maximizing tumor immunity with fractionated radiation. Int. J. Radiat. Oncol. Biol. Phys. 83, 1306–1310 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. Schaue, D. et al. T-cell responses to survivin in cancer patients undergoing radiation therapy. Clin. Cancer Res. 14, 4883–4890 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Liao, Y.-P., Meng, W. S. & McBride, W. H. Antigen presentation by dendritic cells is affected after irradiation [abstract]. Proc. Am. Assoc. Cancer Res. 43, 480–481 (2002).

    Google Scholar 

  198. Dewan, M. Z. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res. 15, 5379–5388 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Butterfield, L. H. et al. Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin. Cancer Res. 9, 998–1008 (2003).

    CAS  PubMed  Google Scholar 

  201. Llosa, N. J. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 5, 43–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  202. Mullen, C. A., Coale, M. M., Lowe, R. & Blaese, R. M. Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res. 54, 1503–1506 (1994).

    CAS  PubMed  Google Scholar 

  203. Pizova, K. et al. Photodynamic therapy for enhancing antitumour immunity. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 156, 93–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Chen, F. H. et al. Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin. Cancer Res. 15, 1721–1729 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. McBride, W. H. Phenotype and functions of intratumoral macrophages. Biochim. Biophys. Acta 865, 27–41 (1986).

    CAS  PubMed  Google Scholar 

  206. Gajewski, T. F. et al. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr. Opin. Immunol. 25, 268–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  207. Dougherty, G. J. & McBride, W. H. Immunoregulating activity of tumor-associated macrophages. Cancer Immunol. Immunother. 23, 67–72 (1986).

    Article  CAS  PubMed  Google Scholar 

  208. Kikuchi, N. et al. Nrf2 protects against pulmonary fibrosis by regulating the lung oxidant level and TH1/TH2 balance. Respir. Res. 11, 31 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Rockwell, C. E., Zhang, M., Fields, P. E. & Klaassen, C. D. TH2 skewing by activation of Nrf2 in CD4+ T cells. J. Immunol. 188, 1630–1637 (2012).

    Article  PubMed  CAS  Google Scholar 

  210. Schaue, D., Xie, M. W., Ratikan, J. A. & McBride, W. H. Regulatory T cells in radiotherapeutic responses. Front. Oncol. 2, 90 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  211. Tsai, C. S. et al. Macrophages from irradiated tumors express higher levels of iNOS, arginase-1 and COX-2, and promote tumor growth. Int. J. Radiat. Oncol. Biol. Phys. 68, 499–507 (2007).

    Article  CAS  PubMed  Google Scholar 

  212. Kioi, M. et al. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest. 120, 694–705 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Tseng, D., Vasquez-Medrano, D. A. & Brown, J. M. Targeting SDF-1/CXCR4 to inhibit tumour vasculature for treatment of glioblastomas. Br. J. Cancer 104, 1805–1809 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Chen, F. H. et al. Combination of vessel-targeting agents and fractionated radiation therapy: the role of the SDF-1/CXCR4 pathway. Int. J. Radiat. Oncol. Biol. Phys. 86, 777–784 (2013).

    Article  PubMed  Google Scholar 

  215. Brown, J. M. Vasculogenesis: a crucial player in the resistance of solid tumours to radiotherapy. Br. J. Radiol. 87, 20130686 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Xu, J. et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 73, 2782–2794 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Chiang, C. S. et al. Irradiation promotes an M2 macrophage phenotype in tumor hypoxia. Front. Oncol. 2, 89 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Ahn, G. O. & Brown, J. M. Influence of bone marrow-derived hematopoietic cells on the tumor response to radiotherapy: experimental models and clinical perspectives. Cell Cycle 8, 970–976 (2009).

    Article  PubMed  CAS  Google Scholar 

  219. Mantovani, A. & Allavena, P. The interaction of anticancer therapies with tumor-associated macrophages. J. Exp. Med. 212, 435–445 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Tsai, J. H. et al. Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biol. Ther. 4, 1395–1400 (2005).

    Article  CAS  PubMed  Google Scholar 

  221. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Johnson, D. B., Rioth, M. J. & Horn, L. Immune checkpoint inhibitors in NSCLC. Curr. Treat. Options Oncol. 15, 658–669 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Demaria, S. et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11, 728–734 (2005).

    CAS  PubMed  Google Scholar 

  224. Pilones, K. A., Vanpouille-Box, C. & Demaria, S. Combination of radiotherapy and immune checkpoint inhibitors. Semin. Radiat. Oncol. 25, 28–33 (2015).

    Article  PubMed  Google Scholar 

  225. Deng, L. et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Invest. 124, 687–695 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Stamell, E. F., Wolchok, J. D., Gnjatic, S., Lee, N. Y. & Brownell, I. The abscopal effect associated with a systemic anti-melanoma immune response. Int. J. Radiat. Oncol. Biol. Phys. 85, 293–295 (2013).

    Article  PubMed  Google Scholar 

  227. Hiniker, S. M. et al. A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl. Oncol. 5, 404–407 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Postow, M. A., Harding, J. & Wolchok, J. D. Targeting immune checkpoints: releasing the restraints on anti-tumor immunity for patients with melanoma. Cancer J. 18, 153–159 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to dedicate this article to H. Rodney Withers, past Chair of Radiation Oncology at the University of California, Los Angeles (UCLA), who died on 25 February 2015. 'Rod' was an intellectual giant who shaped the discipline of radiobiology as it related to radiotherapy. He is greatly missed. The authors would also like to thank Dr Ekaterini Angelis for editorial assistance. Financial support for the authors came from the US Army MTA W81XWH-11-1-0531 (W.H.M.) and NIAID 2U19 AI067769 (W.H.M.).

Author information

Authors and Affiliations

Authors

Contributions

Both the authors researched data for article, contributed to discussion of the content, wrote the article, and reviewed and edited the manuscript before submission and following peer review.

Corresponding author

Correspondence to William H. McBride.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaue, D., McBride, W. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol 12, 527–540 (2015). https://doi.org/10.1038/nrclinonc.2015.120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.120

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer