Skip to main content

Advertisement

Log in

Immunotherapy of head and neck cancer using tumor antigen-specific monoclonal antibodies

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Monoclonal antibodies (mAbs) are now commonly used therapeutic agents in cancer patients. Since US Food and Drug Administration approval of cetuximab for head and neck squamous cell carcinoma, it has been used increasingly in this disease. Several other mAbs also are in development or in clinical trials. Recently, evidence has accumulated that mAbs induce activation of cellular immunity, including natural killer and T cells and that this may contribute to clinical response. mAbs have been shown to mediate antibody-dependent cellular cytotoxicity, complement-dependent lysis, and activation of tumor antigen-specific T cells. Various patient and tumor factors, such as polymorphisms in Fcγ receptors expressed by immune cells, activity of T-regulatory cells, and tumor escape through downregulation of antigen-processing machinery in tumor cells, are likely to modulate the immune activation mediated by therapeutic mAbs. Understanding the interplay of these factors is likely to improve the selection of the most appropriate candidates for mAb-based immunotherapy, prediction of clinical response, and our understanding of mechanisms of tumor escape from therapeutic mAbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Parkin DM, Bray F, Ferlay J, Pisani P: Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001, 94:153–156.

    Article  PubMed  CAS  Google Scholar 

  2. Lee SC, Shores CG, Weissler MC: Salvage surgery after failed primary concomitant chemoradiation. Curr Opin Otolaryngol Head Neck Surg 2008, 16:135–140.

    Article  PubMed  Google Scholar 

  3. Finn OJ: Cancer immunology. N Engl J Med 2008, 358:2704–2715.

    Article  PubMed  CAS  Google Scholar 

  4. Bleeker WK, Lammerts van Bueren JJ, van Ojik HH, et al.: Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy. J Immunol 2004, 173:4699–4707.

    PubMed  CAS  Google Scholar 

  5. Clynes RA, Towers TL, Presta LG, Ravetch JV: Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 2000, 6:443–446.

    Article  PubMed  CAS  Google Scholar 

  6. Harari PM, Allen GW, Bonner JA: Biology of interactions: antiepidermal growth factor receptor agents. J Clin Oncol 2007, 25:4057–4065.

    Article  PubMed  CAS  Google Scholar 

  7. Lopez-Albaitero A, Ferris RL: Immune activation by epidermal growth factor receptor specific monoclonal antibody therapy for head and neck cancer. Arch Otolaryngol Head Neck Surg 2007, 133:1277–1281.

    Article  PubMed  Google Scholar 

  8. Mailliard RB, Son YI, Redlinger R, et al.: Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol 2003, 171:2366–2373.

    PubMed  CAS  Google Scholar 

  9. Moretta L, Ferlazzo G, Bottino C, et al.: Effector and regulatory events during natural killer-dendritic cell interactions. Immunol Rev 2006, 214:219–228.

    Article  PubMed  CAS  Google Scholar 

  10. Bonner JA, Harari PM, Giralt J, et al.: Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006, 354:567–578.

    Article  PubMed  CAS  Google Scholar 

  11. Vermorken JB, Mesia R, Rivera F, et al.: Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 2008, 359:1116–1127.

    Article  PubMed  CAS  Google Scholar 

  12. Kohler G, Milstein C: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256:495–497.

    Article  PubMed  CAS  Google Scholar 

  13. Miller RA, Maloney DG, Warnke R, Levy R: Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med 1982, 306:517–522.

    PubMed  CAS  Google Scholar 

  14. Waldmann TA: Immunotherapy: past, present and future. Nat Med 2003, 9:269–277.

    Article  PubMed  CAS  Google Scholar 

  15. Weiner LM: Fully human therapeutic monoclonal antibodies. J Immunother 2006, 29:1–9.

    Article  PubMed  CAS  Google Scholar 

  16. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT: Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 1984, 81:6851–6855.

    Article  PubMed  CAS  Google Scholar 

  17. Boulianne GL, Hozumi N, Shulman MJ: Production of functional chimaeric mouse/human antibody. Nature 1984, 312:643–646.

    Article  PubMed  CAS  Google Scholar 

  18. Rubin Grandis J, Melhem MF, Gooding WE, et al.: Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 1998, 90:824–832.

    Article  Google Scholar 

  19. Mendelsohn J, Baselga J: Epidermal growth factor receptor targeting in cancer. Semin Oncol 2006, 33:369–385.

    Article  PubMed  CAS  Google Scholar 

  20. Li S, Schmitz KR, Jeffrey PD, et al.: Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 2005, 7:301–311.

    Article  PubMed  CAS  Google Scholar 

  21. Mandic R, Rodgarkia-Dara CJ, Zhu L, et al.: Treatment of HNSCC cell lines with the EGFR-specific inhibitor cetuximab (Erbitux) results in paradox phosphorylation of tyrosine 1173 in the receptor. FEBS Lett 2006, 580:4793–4800.

    Article  PubMed  CAS  Google Scholar 

  22. Yoshida T, Okamoto I, Okabe T, et al.: Matuzumab and cetuximab activate the epidermal growth factor receptor but fail to trigger downstream signaling by Akt or Erk. Int J Cancer 2008, 122:1530–1538.

    Article  PubMed  CAS  Google Scholar 

  23. Wheeler DL, Huang S, Kruser TJ, et al.: Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 2008, 27:3944–3956.

    Article  PubMed  CAS  Google Scholar 

  24. Forastiere AA, Burtness BA: Epidermal growth factor receptor inhibition in head and neck cancer-more insights, but more questions. J Clin Oncol 2007, 25:2152–2155.

    Article  PubMed  Google Scholar 

  25. Weiner GJ: Monoclonal antibody mechanisms of action in cancer. Immunol Res 2007, 39:271–278.

    Article  PubMed  CAS  Google Scholar 

  26. Seiwert TY, Cohen EE: Targeting angiogenesis in head and neck cancer. Semin Oncol 2008, 35:274–285.

    Article  PubMed  Google Scholar 

  27. Fujita K, Sano D, Kimura M, et al.: Anti-tumor effects of bevacizumab in combination with paclitaxel on head and neck squamous cell carcinoma. Oncol Rep 2007, 18:47–51.

    PubMed  CAS  Google Scholar 

  28. Roda JM, Joshi T, Butchar JP, et al.: The activation of natural killer cell effector functions by cetuximab-coated, epidermal growth factor receptor positive tumor cells is enhanced by cytokines. Clin Cancer Res 2007, 13:6419–6428.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang W, Gordon M, Schultheis AM, et al.: FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol 2007, 25:3712–3718.

    Article  PubMed  CAS  Google Scholar 

  30. Fricke I, Mirza N, Dupont J, et al.: Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin Cancer Res 2007, 13:4840–4848.

    Article  PubMed  CAS  Google Scholar 

  31. Lewis GD, Figari I, Fendly B, et al.: Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol Immunother 1993, 37:255–263.

    Article  PubMed  CAS  Google Scholar 

  32. Weng WK, Levy R: Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 2003, 21:3940–3947.

    Article  PubMed  CAS  Google Scholar 

  33. Weng WK, Czerwinski D, Timmerman J, et al.: Clinical outcome of lymphoma patients after idiotype vaccination is correlated with humoral immune response and immunoglobulin G Fc receptor genotype. J Clin Oncol 2004, 22:4717–4724.

    Article  PubMed  CAS  Google Scholar 

  34. Taylor C, Hershman D, Shah N, et al.: Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy. Clin Cancer Res 2007, 13:5133–5143.

    Article  PubMed  CAS  Google Scholar 

  35. Varchetta S, Gibelli N, Oliviero B, et al.: Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res 2007, 67:11991–11999.

    Article  PubMed  CAS  Google Scholar 

  36. Kimura H, Sakai K, Arao T, et al.: Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Sci 2007, 98:1275–1280.

    Article  PubMed  CAS  Google Scholar 

  37. Dechant M, Weisner W, Berger S, et al.: Complementdependent tumor cell lysis triggered by combinations of epidermal growth factor receptor antibodies. Cancer Res 2008, 68:4998–5003.

    Article  PubMed  CAS  Google Scholar 

  38. Schmiedel J, Blaukat A, Li S, et al.: Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Cancer Cell 2008, 13:365–373.

    Article  PubMed  CAS  Google Scholar 

  39. Dhodapkar MV, Dhodapkar KM, Li Z: Role of chaperones and FcgammaR in immunogenic death. Curr Opin Immunol 2008, 20:512–517.

    Article  PubMed  CAS  Google Scholar 

  40. Rafiq K, Bergtold A, Clynes R: Immune complex-mediated antigen presentation induces tumor immunity. J Clin Invest 2002, 110:71–79.

    PubMed  CAS  Google Scholar 

  41. Dhodapkar KM, Krasovsky J, Williamson B, Dhodapkar MV: Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J Exp Med 2002, 195:125–133.

    Article  PubMed  CAS  Google Scholar 

  42. Harbers SO, Crocker A, Catalano G, et al.: Antibodyenhanced cross-presentation of self antigen breaks T cell tolerance. J Clin Invest 2007, 117:1361–1369.

    Article  PubMed  CAS  Google Scholar 

  43. Banerjee D, Matthews P, Matayeva E, et al.: Enhanced T-cell responses to glioma cells coated with the anti-EGF receptor antibody and targeted to activating FcgammaRs on human dendritic cells. J Immunother 2008, 31:113–120.

    Article  PubMed  CAS  Google Scholar 

  44. Cooper MA, Fehniger TA, Fuchs A, et al.: NK cell and DC interactions. Trends Immunol 2004, 25:47–52.

    Article  PubMed  CAS  Google Scholar 

  45. Lucas M, Schachterle W, Oberle K, et al.: Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 2007, 26:503–517.

    Article  PubMed  CAS  Google Scholar 

  46. el-Shami K, Tirosh B, Bar-Haim E, et al.: MHC class Irestricted epitope spreading in the context of tumor rejection following vaccination with a single immunodominant CTL epitope. Eur J Immunol 1999, 29:3295–3301.

    Article  PubMed  CAS  Google Scholar 

  47. Tax WJ, Tamboer WP, Jacobs CW, et al.: Role of polymorphic Fc receptor Fc gammaRIIa in cytokine release and adverse effects of murine IgG1 anti-CD3/T cell receptor antibody (WT31). Transplantation 1997, 63:106–112.

    Article  PubMed  CAS  Google Scholar 

  48. Paiva M, Marques H, Martins A, et al.: FcgammaRIIa polymorphism and clinical response to rituximab in non-Hodgkin lymphoma patients. Cancer Genet Cytogenet 2008, 183:35–40.

    Article  PubMed  CAS  Google Scholar 

  49. Whiteside TL: Immunobiology of head and neck cancer. Cancer Metastasis Rev 2005, 24:95–105.

    Article  PubMed  CAS  Google Scholar 

  50. Bergmann C, Strauss L, Wang Y, et al.: T regulatory type 1 cells in squamous cell carcinoma of the head and neck: mechanisms of suppression and expansion in advanced disease. Clin Cancer Res 2008, 14:3706–3715.

    Article  PubMed  CAS  Google Scholar 

  51. Lopez-Albaitero A, Nayak JV, Ogino T, et al.: Role of antigen-processing machinery in the in vitro resistance of squamous cell carcinoma of the head and neck cells to recognition by CTL. J Immunol 2006, 176:3402–3409.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Ferris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.C., López-Albaitero, A. & Ferris, R.L. Immunotherapy of head and neck cancer using tumor antigen-specific monoclonal antibodies. Curr Oncol Rep 11, 156–162 (2009). https://doi.org/10.1007/s11912-009-0023-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-009-0023-5

Keywords

Navigation