Skip to main content

Advertisement

Log in

Down-modulation of TNFSF15 in ovarian cancer by VEGF and MCP-1 is a pre-requisite for tumor neovascularization

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Persistent inflammation and neovascularization are critical to cancer development. In addition to upregulation of positive control mechanisms such as overexpression of angiogenic and inflammatory factors in the cancer microenvironment, loss of otherwise normally functioning negative control mechanisms is likely to be an important attribute. Insights into the down-modulation of such negative control mechanisms remain largely unclear, however. We show here that tumor necrosis factor superfamily-15 (TNFSF15), an endogenous inhibitor of neovascularization, is a critical component of the negative control mechanism that operates in normal ovary but is missing in ovarian cancer. We show in clinical settings that TNFSF15 is present prominently in the vasculature of normal ovary but diminishes in ovarian cancer as the disease progresses. Vascular endothelial growth factor (VEGF) produced by cancer cells and monocyte chemotactic protein-1 (MCP-1) produced mainly by tumor-infiltrating macrophages and regulatory T cells effectively inhibits TNFSF15 production by endothelial cells in vitro. Using a mouse syngeneic tumor model, we demonstrate that silencing TNFSF15 by topical shRNA treatments prior to and following mouse ovarian cancer ID8 cell inoculation greatly facilitates angiogenesis and tumor growth, whereas systemic application of recombinant TNFSF15 inhibits angiogenesis and tumor growth. Our findings indicate that downregulation of TNFSF15 by cancer cells and tumor infiltrating macrophages and lymphocytes is a pre-requisite for tumor neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosmorduc O, Housset C (2010) Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease. Semin Liver Dis 30(3):258–270. doi:10.1055/s-0030-1255355

    Article  PubMed  CAS  Google Scholar 

  2. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72(11):1605–1621. doi:10.1016/j.bcp.2006.06.029

    Article  PubMed  CAS  Google Scholar 

  3. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867. doi:10.1038/nature01322

    Article  PubMed  CAS  Google Scholar 

  4. Fiedler U, Augustin HG (2006) Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol 27(12):552–558. doi:10.1016/j.it.2006.10.004

    Article  PubMed  CAS  Google Scholar 

  5. Coulon S, Heindryckx F, Geerts A, Van Steenkiste C, Colle I, Van Vlierberghe H (2011) Angiogenesis in chronic liver disease and its complications. Liver Int 31(2):146–162. doi:10.1111/j.1478-3231.2010.02369.x

    Article  PubMed  CAS  Google Scholar 

  6. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545. doi:10.1016/S0140-6736(00)04046-0

    Article  PubMed  CAS  Google Scholar 

  7. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31

    Article  PubMed  CAS  Google Scholar 

  8. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309. doi:10.1016/j.ccr.2005.09.005

    Article  PubMed  CAS  Google Scholar 

  9. Dvorak HF, Detmar M, Claffey KP, Nagy JA, van de Water L, Senger DR (1995) Vascular permeability factor/vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation. Int Arch Allergy Immunol 107(1–3):233–235

    Article  PubMed  CAS  Google Scholar 

  10. Jeon BH, Jang C, Han J, Kataru RP, Piao L, Jung K, Cha HJ, Schwendener RA, Jang KY, Kim KS, Alitalo K, Koh GY (2008) Profound but dysfunctional lymphangiogenesis via vascular endothelial growth factor ligands from CD11b+ macrophages in advanced ovarian cancer. Cancer Res 68(4):1100–1109. doi:10.1158/0008-5472.CAN-07-2572

    Article  PubMed  CAS  Google Scholar 

  11. Duyndam MC, Hilhorst MC, Schluper HM, Verheul HM, van Diest PJ, Kraal G, Pinedo HM, Boven E (2002) Vascular endothelial growth factor-165 overexpression stimulates angiogenesis and induces cyst formation and macrophage infiltration in human ovarian cancer xenografts. Am J Pathol 160(2):537–548

    Article  PubMed  CAS  Google Scholar 

  12. Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6(8):3282–3289

    PubMed  CAS  Google Scholar 

  13. Jin G, Kawsar HI, Hirsch SA, Zeng C, Jia X, Feng Z, Ghosh SK, Zheng QY, Zhou A, McIntyre TM, Weinberg A (2010) An antimicrobial peptide regulates tumor-associated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis. PLoS One 5(6):e10993. doi:10.1371/journal.pone.0010993

  14. Boelte KC, Gordy LE, Joyce S, Thompson MA, Yang L, Lin PC (2011) Rgs2 mediates pro-angiogenic function of myeloid derived suppressor cells in the tumor microenvironment via upregulation of MCP-1. PLoS One 6(4):e18534. doi:10.1371/journal.pone.0018534

  15. Saenz-Lopez P, Carretero R, Cozar JM, Romero JM, Canton J, Vilchez JR, Tallada M, Garrido F, Ruiz-Cabello F (2008) Genetic polymorphisms of RANTES, IL1-A, MCP-1 and TNF-A genes in patients with prostate cancer. BMC Cancer 8:382. doi:10.1186/1471-2407-8-382

    Article  PubMed  Google Scholar 

  16. Monti P, Leone BE, Marchesi F, Balzano G, Zerbi A, Scaltrini F, Pasquali C, Calori G, Pessi F, Sperti C, Di Carlo V, Allavena P, Piemonti L (2003) The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res 63(21):7451–7461

    PubMed  CAS  Google Scholar 

  17. Negus RP, Stamp GW, Relf MG, Burke F, Malik ST, Bernasconi S, Allavena P, Sozzani S, Mantovani A, Balkwill FR (1995) The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest 95(5):2391–2396. doi:10.1172/JCI117933

    Article  PubMed  CAS  Google Scholar 

  18. Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 87(13):5134–5138

    Article  PubMed  CAS  Google Scholar 

  19. Standiford TJ, Kunkel SL, Phan SH, Rollins BJ, Strieter RM (1991) Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem 266(15):9912–9918

    PubMed  CAS  Google Scholar 

  20. Brown Z, Strieter RM, Neild GH, Thompson RC, Kunkel SL, Westwick J (1992) IL-1 receptor antagonist inhibits monocyte chemotactic peptide 1 generation by human mesangial cells. Kidney Int 42(1):95–101

    Article  PubMed  CAS  Google Scholar 

  21. Barna BP, Pettay J, Barnett GH, Zhou P, Iwasaki K, Estes ML (1994) Regulation of monocyte chemoattractant protein-1 expression in adult human non-neoplastic astrocytes is sensitive to tumor necrosis factor (TNF) or antibody to the 55-kDa TNF receptor. J Neuroimmunol 50(1):101–107

    Article  PubMed  CAS  Google Scholar 

  22. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659. doi:10.1056/NEJM198612253152606

  23. Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339(6219):58–61. doi:10.1038/339058a0

    Article  PubMed  CAS  Google Scholar 

  24. Fraser HM, Bell J, Wilson H, Taylor PD, Morgan K, Anderson RA, Duncan WC (2005) Localization and quantification of cyclic changes in the expression of endocrine gland vascular endothelial growth factor in the human corpus luteum. J Clin Endocrinol Metab 90(1):427–434. doi:10.1210/jc.2004-0843

    Article  PubMed  CAS  Google Scholar 

  25. Davis JS, Rueda BR, Spanel-Borowski K (2003) Microvascular endothelial cells of the corpus luteum. Reprod Biol Endocrinol 1:89. doi:10.1186/1477-7827-1-89

    Article  PubMed  Google Scholar 

  26. Fraser HM, Wulff C (2001) Angiogenesis in the primate ovary. Reprod Fertil Dev 13(7–8):557–566

    Article  PubMed  CAS  Google Scholar 

  27. Delli Carpini J, Karam AK, Montgomery L (2010) Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer. Angiogenesis 13(1):43–58. doi:10.1007/s10456-010-9163-3

    Article  PubMed  Google Scholar 

  28. Lebovic DI, Shifren JL, Ryan IP, Mueller MD, Korn AP, Darney PD, Taylor RN (2000) Ovarian steroid and cytokine modulation of human endometrial angiogenesis. Hum Reprod 15(Suppl 3):67–77

    Google Scholar 

  29. Zhang L, Yang N, Conejo-Garcia JR, Katsaros D, Mohamed-Hadley A, Fracchioli S, Schlienger K, Toll A, Levine B, Rubin SC, Coukos G (2003) Expression of endocrine gland-derived vascular endothelial growth factor in ovarian carcinoma. Clin Cancer Res 9(1):264–272

    PubMed  Google Scholar 

  30. Boocock CA, Charnock-Jones DS, Sharkey AM, McLaren J, Barker PJ, Wright KA, Twentyman PR, Smith SK (1995) Expression of vascular endothelial growth factor and its receptors fit and KDR in ovarian carcinoma. J Natl Cancer Inst 87(7):506–516

    Article  PubMed  CAS  Google Scholar 

  31. Orre M, Rogers PA (1999) VEGF, VEGFR-1, VEGFR-2, microvessel density and endothelial cell proliferation in tumours of the ovary. Int J Cancer 84(2):101–108. doi:10.1002/(SICI)1097-0215(19990420)84:2<101:AID-IJC2>3.0.CO;2-5

    Article  PubMed  CAS  Google Scholar 

  32. Hazelton D, Nicosia RF, Nicosia SV (1999) Vascular endothelial growth factor levels in ovarian cyst fluid correlate with malignancy. Clin Cancer Res 5(4):823–829

    PubMed  CAS  Google Scholar 

  33. Kuwahara K, Sasaki T, Kobayashi K, Noma B, Serikawa M, Iiboshi T, Miyata H, Kuwada Y, Murakami M, Yamasaki S, Kariya K, Morinaka K, Chayama K (2004) Gemcitabine suppresses malignant ascites of human pancreatic cancer: correlation with VEGF expression in ascites. Oncol Rep 11(1):73–80

    PubMed  CAS  Google Scholar 

  34. Bolat F, Gumurdulu D, Erkanli S, Kayaselcuk F, Zeren H, Ali Vardar M, Kuscu E (2008) Maspin overexpression correlates with increased expression of vascular endothelial growth factors A, C, and D in human ovarian carcinoma. Pathol Res Pract 204(6):379–387. doi:10.1016/j.prp.2008.01.011

    Article  PubMed  Google Scholar 

  35. Juric G, Zarkovic N, Nola M, Tillian M, Jukic S (2001) The value of cell proliferation and angiogenesis in the prognostic assessment of ovarian granulosa cell tumors. Tumori 87(1):47–53

    PubMed  CAS  Google Scholar 

  36. Zhai Y, Ni J, Jiang GW, Lu J, Xing L, Lincoln C, Carter KC, Janat F, Kozak D, Xu S, Rojas L, Aggarwal BB, Ruben S, Li LY, Gentz R, Yu GL (1999) VEGI, a novel cytokine of the tumor necrosis factor family, is an angiogenesis inhibitor that suppresses the growth of colon carcinomas in vivo. FASEB J 13(1):181–189

    PubMed  CAS  Google Scholar 

  37. Zhai Y, Yu J, Iruela-Arispe L, Huang WQ, Wang Z, Hayes AJ, Lu J, Jiang G, Rojas L, Lippman ME, Ni J, Yu GL, Li LY (1999) Inhibition of angiogenesis and breast cancer xenograft tumor growth by VEGI, a novel cytokine of the TNF superfamily. Int J Cancer 82(1):131–136. doi:10.1002/(SICI)1097-0215(19990702)82:1<131:AID-IJC22>3.0.CO;2-O

    Article  PubMed  CAS  Google Scholar 

  38. Chew LJ, Pan H, Yu J, Tian S, Huang WQ, Zhang JY, Pang S, Li LY (2002) A novel secreted splice variant of vascular endothelial cell growth inhibitor. FASEB J 16(7):742–744. doi:10.1096/fj.01-0757fje

    PubMed  CAS  Google Scholar 

  39. Yu J, Tian S, Metheny-Barlow L, Chew LJ, Hayes AJ, Pan H, Yu GL, Li LY (2001) Modulation of endothelial cell growth arrest and apoptosis by vascular endothelial growth inhibitor. Circ Res 89(12):1161–1167

    Article  PubMed  CAS  Google Scholar 

  40. Tian F, Liang PH, Li LY (2009) Inhibition of endothelial progenitor cell differentiation by VEGI. Blood 113(21):5352–5360. doi:10.1182/blood-2008-08-173773

    Article  PubMed  CAS  Google Scholar 

  41. Hou W, Medynski D, Wu S, Lin X, Li LY (2005) VEGI-192, a new isoform of TNFSF15, specifically eliminates tumor vascular endothelial cells and suppresses tumor growth. Clin Cancer Res 11(15):5595–5602. doi:10.1158/1078-0432.CCR-05-0384

    Article  PubMed  CAS  Google Scholar 

  42. Liang PH, Tian F, Lu Y, Duan B, Stolz DB, Li LY (2011) Vascular endothelial growth inhibitor (VEGI; TNFSF15) inhibits bone marrow-derived endothelial progenitor cell incorporation into Lewis lung carcinoma tumors. Angiogenesis 14(1):61–68. doi:10.1007/s10456-010-9195-8

    Article  PubMed  CAS  Google Scholar 

  43. Parr C, Gan CH, Watkins G, Jiang WG (2006) Reduced vascular endothelial growth inhibitor (VEGI) expression is associated with poor prognosis in breast cancer patients. Angiogenesis 9(2):73–81. doi:10.1007/s10456-006-9033-1

    Article  PubMed  CAS  Google Scholar 

  44. Zhou J, Yang Z, Tsuji T, Gong J, Xie J, Chen C, Li W, Amar S, Luo Z (2011) LITAF and TNFSF15, two downstream targets of AMPK, exert inhibitory effects on tumor growth. Oncogene 30(16):1892–1900. doi:10.1038/onc.2010.575

    Article  PubMed  CAS  Google Scholar 

  45. Zhang N, Sanders AJ, Ye L, Jiang WG (2009) Vascular endothelial growth inhibitor in human cancer (review). Int J Mol Med 24(1):3–8

    PubMed  CAS  Google Scholar 

  46. Zhang N, Sanders AJ, Ye L, Kynaston HG, Jiang WG (2010) Expression of vascular endothelial growth inhibitor (VEGI) in human urothelial cancer of the bladder and its effects on the adhesion and migration of bladder cancer cells in vitro. Anticancer Res 30(1):87–95

    PubMed  CAS  Google Scholar 

  47. Conway KP, Price P, Harding KG, Jiang WG (2007) The role of vascular endothelial growth inhibitor in wound healing. Int Wound J 4(1):55–64. doi:10.1111/j.1742-481X.2006.00295.x

    Article  PubMed  Google Scholar 

  48. Bermont L, Lamielle F, Lorchel F, Fauconnet S, Esumi H, Weisz A, Adessi GL (2001) Insulin up-regulates vascular endothelial growth factor and stabilizes its messengers in endometrial adenocarcinoma cells. J Clin Endocrinol Metab 86(1):363–368

    Article  PubMed  CAS  Google Scholar 

  49. Yoshimura T, Robinson EA, Tanaka S, Appella E, Leonard EJ (1989) Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohemagglutinin-stimulated human blood mononuclear leukocytes. J Immunol 142(6):1956–1962

    PubMed  CAS  Google Scholar 

  50. Standiford TJ, Rolfe MR, Kunkel SL, Lynch JP III, Becker FS, Orringer MB, Phan S, Strieter RM (1993) Altered production and regulation of monocyte chemoattractant protein-1 from pulmonary fibroblasts isolated from patients with idiopathic pulmonary fibrosis. Chest 103(2 Suppl):121S

    Article  PubMed  CAS  Google Scholar 

  51. Cinque P, Vago L, Mengozzi M, Torri V, Ceresa D, Vicenzi E, Transidico P, Vagani A, Sozzani S, Mantovani A, Lazzarin A, Poli G (1998) Elevated cerebrospinal fluid levels of monocyte chemotactic protein-1 correlate with HIV-1 encephalitis and local viral replication. AIDS 12(11):1327–1332

    Article  PubMed  CAS  Google Scholar 

  52. Marini E, Tiberio L, Caracciolo S, Tosti G, Guzman CA, Schiaffonati L, Fiorentini S, Caruso A (2008) HIV-1 matrix protein p17 binds to monocytes and selectively stimulates MCP-1 secretion: role of transcriptional factor AP-1. Cell Microbiol 10(3):655–666. doi:10.1111/j.1462-5822.2007.01073.x

    Article  PubMed  CAS  Google Scholar 

  53. Krishnaswamy G, Smith JK, Mukkamala R, Hall K, Joyner W, Yerra L, Chi DS (1998) Multifunctional cytokine expression by human coronary endothelium and regulation by monokines and glucocorticoids. Microvasc Res 55(3):189–200

    Article  PubMed  CAS  Google Scholar 

  54. Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ, Murphy WJ (2000) Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96(1):34–40

    PubMed  CAS  Google Scholar 

  55. Krensky AM, Clayberger C (2009) Biology and clinical relevance of granulysin. Tissue Antigens 73(3):193–198. doi:10.1111/j.1399-0039.2008.01218.x

    Article  PubMed  CAS  Google Scholar 

  56. Soria G, Ben-Baruch A (2008) The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267(2):271–285. doi:10.1016/j.canlet.2008.03.018

    Article  PubMed  CAS  Google Scholar 

  57. Janat-Amsbury MM, Yockman JW, Anderson ML, Kieback DG, Kim SW (2006) Comparison of ID8 MOSE and VEGF-modified ID8 cell lines in an immunocompetent animal model for human ovarian cancer. Anticancer Res 26(4B):2785–2789

    Google Scholar 

  58. Holtz DO, Krafty RT, Mohamed-Hadley A, Zhang L, Alagkiozidis I, Leiby B, Guo W, Gimotty PA, Coukos G (2008) Should tumor VEGF expression influence decisions on combining low-dose chemotherapy with antiangiogenic therapy? Preclinical modeling in ovarian cancer. J Trans Med 6:2. doi:10.1186/1479-5876-6-2

    Article  Google Scholar 

  59. Li Z, Huang H, Boland P, Dominguez MG, Burfeind P, Lai KM, Lin HC, Gale NW, Daly C, Auerbach W, Valenzuela D, Yancopoulos GD, Thurston G (2009) Embryonic stem cell tumor model reveals role of vascular endothelial receptor tyrosine phosphatase in regulating Tie2 pathway in tumor angiogenesis. Proc Natl Acad Sci USA 106(52):22399–22404. doi:10.1073/pnas.0911189106

    Article  PubMed  CAS  Google Scholar 

  60. Kim K, Zang R, Choi SC, Ryu SY, Kim JW (2009) Current status of gynecological cancer in China. J Gynecol Oncol 20(2):72–76. doi:10.3802/jgo.2009.20.2.72

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported in part by grants from Ministry of Science and Technology of China (2009CB918901 to L.Y.L), National Institute of Health of the United States (R01CA113875 to L.Y.L), and Natural Science Foundation of China (30670801 to W.M.D).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Yao or Lu-Yuan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10456_2011_9244_MOESM1_ESM.jpg

Figure S1. Changes in the production of all 60 cytokines on the panel. White bar, 10% DMEM. Gray bar, OVCAR3 CM. Stripe bar, CM from untreated CD4+ CD25+ TReg. Black bar, CM from OVCAR3 CM-treated CD4+ CD25+ TReg. 1. Angiogenin; 2.BDNF; 3.BLC; 4.BMP-4; 5. BMP-6; 6. CK β 8-1; 7. CNTF; 8. EGF; 9. Eotaxin; 10.Eotaxin-2; 11.Eotaxin-3; 12. FGF-6; 13. FGF-7; 14. Fit-3 Ligand; 15. Fractalkine; 16. GCP-2; 17. GDNF; 18. GM-CSF; 19. I-309; 20. IFN-γ; 21. IGFBP-1; 22. IGFBP-2; 23. IGFBP-4; 24.IGF-I; 25.IL-10; 26.IL-13; 27.IL-15; 28.IL-16; 29.IL- 1α; 30.IL-1β; 31.IL-1ra; 32.IL-2; 33.IL-3; 34.IL-4; 35.IL-5; 36.IL-6; 37.IL-7; 38.Leptin; 39.LIGHT; 40.MCP-1; 41. MCP-2; 42. MCP-3; 43. MCP-4; 44. M-CSF; 45. MDC; 46. MIG; 47. MIP-1δ; 48. MIP-3α; 49. NAP-2; 50. NT-3; 51. PARC; 52. PDGF-BB; 53. RANTES; 54. SCF; 55. SDF-1; 56. TARC; 57. TGF-β1; 58. TGF-β 3; 59. TNF-α; 60. TNF-β. (JPEG 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, W., Gu, X., Lu, Y. et al. Down-modulation of TNFSF15 in ovarian cancer by VEGF and MCP-1 is a pre-requisite for tumor neovascularization. Angiogenesis 15, 71–85 (2012). https://doi.org/10.1007/s10456-011-9244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-011-9244-y

Keywords

Navigation