Skip to main content

Advertisement

Log in

Vascular endothelial growth inhibitor (VEGI; TNFSF15) inhibits bone marrow-derived endothelial progenitor cell incorporation into Lewis lung carcinoma tumors

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Bone marrow (BM)-derived endothelial progenitor cells (EPC) have a critical role in tumor neovascularization. Vascular endothelial growth inhibitor (VEGI) is a member of the TNF superfamily (TNFSF15). We have shown that recombinant VEGI suppresses tumor angiogenesis by specifically eliminating proliferating endothelial cells (EC). We report here that treatment of tumor bearing mice with recombinant VEGI leads to a significantly decreased population of BM-derived EPC in the tumors. We transplanted whole bone marrow from green fluorescent protein (GFP) transgenic mice into C57BL/6 recipient mice, which were then inoculated with Lewis lung carcinoma (LLC) cells. Intraperitoneal injection of recombinant VEGI led to significant inhibition of tumor growth and decrease of vasculature density compared to vehicle-treated mice. Tumor implantation yielded a decrease of BM-derived EPC in the peripheral blood, while VEGI-treatment resulted in an initial delay of such decrease. Analysis of the whole bone marrow showed a decrease of Lin-c-Kit+-Sca-1+ hematopoietic stem cell (HSC) population in tumor bearing mice; however, VEGI-treatment caused a significant increase of this cell population. In addition, the number of BM-derived EPC in VEGI-treated tumors was notably less than that in the vehicle-treated group, and most of the apoptotic cells in the VEGI-treated tumors were of bone marrow origin. These findings indicate that VEGI inhibits BM-derived EPC mobilization and prevents their incorporation into LLC tumors by inducing apoptosis specifically of BM-derived cells, resulting in the inhibition of EPC-supported tumor vasculogenesis and tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  2. Asahara T, Masuda H, Takahashi T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    CAS  PubMed  Google Scholar 

  3. Kalka C, Masuda H, Takahashi T et al (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci 97:3422–3427

    Article  CAS  PubMed  Google Scholar 

  4. Murayama T, Tepper OM, Silver M et al (2002) Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 30:967–972

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi T, Kalka C, Masuda H et al (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  CAS  PubMed  Google Scholar 

  6. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  CAS  PubMed  Google Scholar 

  7. Davidoff AM, Ng CY, Brown P et al (2001) Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res 7:2870–2879

    CAS  PubMed  Google Scholar 

  8. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  CAS  PubMed  Google Scholar 

  9. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  10. Shi Q, Rafii S, Wu MH et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367

    CAS  PubMed  Google Scholar 

  11. Asahara T, Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287:C572–C579

    Article  CAS  PubMed  Google Scholar 

  12. Gill M, Dias S, Hattori K et al (2001) Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res 88:167–174

    CAS  PubMed  Google Scholar 

  13. Khakoo AY, Finkel T (2005) Endothelial progenitor cells. Annu Rev Med 56:79–101

    Article  CAS  PubMed  Google Scholar 

  14. Asahara T, Takahashi T, Masuda H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972

    Article  CAS  PubMed  Google Scholar 

  15. Lyden D, Hattori K, Dias S et al (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201

    Article  CAS  PubMed  Google Scholar 

  16. Hilbe W, Dirnhofer S, Oberwasserlechner F et al (2004) CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J Clin Pathol 57:965–969

    Article  CAS  PubMed  Google Scholar 

  17. Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319:195–198

    Article  CAS  PubMed  Google Scholar 

  18. Chew LJ, Pan H, Yu J et al (2002) A novel secreted splice variant of vascular endothelial cell growth inhibitor. FASEB J 16:742–744

    CAS  PubMed  Google Scholar 

  19. Yu J, Tian S, Metheny-Barlow L et al (2001) Modulation of endothelial cell growth arrest and apoptosis by vascular endothelial growth inhibitor. Circ Res 89:1161–1167

    Article  CAS  PubMed  Google Scholar 

  20. Yue TL, Ni J, Romanic AM et al (1999) TL1, a novel tumor necrosis factor-like cytokine, induces apoptosis in endothelial cells. Involvement of activation of stress protein kinases (stress-activated protein kinase and p38 mitogen-activated protein kinase) and caspase-3-like protease. J Biol Chem 274:1479–1486

    Article  CAS  PubMed  Google Scholar 

  21. Tian F, Liang PH, Li LY (2009) Inhibition of endothelial progenitor cell differentiation by VEGI. Blood 113:5352–5360

    Article  CAS  PubMed  Google Scholar 

  22. Parr C, Gan CH, Watkins G, Jiang WG (2006) Reduced vascular endothelial growth inhibitor (VEGI) expression is associated with poor prognosis in breast cancer patients. Angiogenesis 9:73–81

    Article  CAS  PubMed  Google Scholar 

  23. Zhang N, Sanders AJ, Ye L, Kynaston HG, Jiang WG (2009) Vascular endothelial growth inhibitor, expression in human prostate cancer tissue and the impact on adhesion and migration of prostate cancer cells in vitro. Int J Oncol 35:1473–1480

    Article  PubMed  Google Scholar 

  24. Zhang N, Sanders AJ, Ye L, Kynaston HG, Jiang WG (2010) Expression of vascular endothelial growth inhibitor (VEGI) in human urothelial cancer of the bladder and its effects on the adhesion and migration of bladder cancer cells in vitro. Anticancer Res 30:87–95

    CAS  PubMed  Google Scholar 

  25. Conway KP, Price P, Harding KG, Jiang WG (2007) The role of vascular endothelial growth inhibitor in wound healing. Int Wound J 4:55–64

    Article  PubMed  Google Scholar 

  26. Hou W, Medynski D, Wu S, Lin X, Li LY (2005) VEGI-192, a new isoform of TNFSF15, specifically eliminates tumor vascular endothelial cells and suppresses tumor growth. Clin Cancer Res 11:5595–5602

    Article  CAS  PubMed  Google Scholar 

  27. Zhai Y, Ni J, Jiang GW et al (1999) VEGI, a novel cytokine of the tumor necrosis factor family, is an angiogenesis inhibitor that suppresses the growth of colon carcinomas in vivo. FASEB J 13:181–189

    CAS  PubMed  Google Scholar 

  28. Zhai Y, Yu J, Iruela-Arispe L et al (1999) Inhibition of angiogenesis and breast cancer xenograft tumor growth by VEGI, a novel cytokine of the TNF superfamily. Int J Cancer 82:131–136

    Article  CAS  PubMed  Google Scholar 

  29. Qin G, Ii M, Silver M et al (2006) Functional disruption of alpha4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization. J Exp Med 203:153–163

    Article  CAS  PubMed  Google Scholar 

  30. Ceradini DJ, Kulkarni AR, Callaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864

    Article  CAS  PubMed  Google Scholar 

  31. Garcia-Barros M, Paris F, Cordon-Cardo C et al (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159

    Article  CAS  PubMed  Google Scholar 

  32. Purhonen S, Palm J, Rossi D et al (2008) Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci USA 105:6620–6625

    Article  CAS  PubMed  Google Scholar 

  33. De Palma M, Venneri MA, Roca C, Naldini L (2003) Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med 9:789–795

    Article  PubMed  Google Scholar 

  34. Göthert JR, Gustin SE, van Eekelen JA et al (2004) Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood 104:1769–1777

    Article  PubMed  Google Scholar 

  35. Peters BA, Diaz LA, Polyak K et al (2005) Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 11:261–262

    Article  CAS  PubMed  Google Scholar 

  36. Rajantie I, Ilmonen M, Alminaite A, Ozerdem U, Alitalo K, Salven P (2004) Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104:2084–2086

    Article  CAS  PubMed  Google Scholar 

  37. Shinde Patil VR, Friedrich EB, Wolley AE, Gerszten RE, Allport JR, Weissleder R (2005) Bone marrow-derived lin(−)c-kit(+)Sca-1+ stem cells do not contribute to vasculogenesis in Lewis lung carcinoma. Neoplasia 7:234–240

    Article  CAS  PubMed  Google Scholar 

  38. Machein MR, Renninger S, de Lima-Hahn E, Plate KH (2003) Minor contribution of bone marrow-derived endothelial progenitors to the vascularization of murine gliomas. Brain Pathol 13:582–597

    Article  CAS  PubMed  Google Scholar 

  39. Wickersheim A, Kerber M, de Miguel LS, Plate KH, Machein MR (2009) Endothelial progenitor cells do not contribute to tumor endothelium in primary and metastatic tumors. Int J Cancer 125:1771–1777

    Article  CAS  PubMed  Google Scholar 

  40. Nolan DJ, Ciarrocchi A, Mellick AS et al (2007) Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 21:1546–1558

    Article  CAS  PubMed  Google Scholar 

  41. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9:702–712

    Article  CAS  PubMed  Google Scholar 

  42. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by grants to L.Y.L from The National Institute of Health (CA113875), Pennsylvania Department of Health, The Hillman Foundation, and The Ministry of Science and Technology of China (2009CB918901). We thank Dr. Hui Yu, Dr. Richard XuFeng, and Mr. Mark Ross for their skillful technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All experiments performed comply with the current laws of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Yuan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, P.H., Tian, F., Lu, Y. et al. Vascular endothelial growth inhibitor (VEGI; TNFSF15) inhibits bone marrow-derived endothelial progenitor cell incorporation into Lewis lung carcinoma tumors. Angiogenesis 14, 61–68 (2011). https://doi.org/10.1007/s10456-010-9195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-010-9195-8

Keywords

Navigation