Skip to main content

Advertisement

Log in

Combination therapy with PD-1 or PD-L1 inhibitors for cancer

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Immune checkpoint inhibitors (ICIs)—such as antibodies to programmed cell death–1 (PD-1), to its ligand PD-L1, or to cytotoxic T lymphocyte-associated protein–4 (CTLA-4)—are an evolving treatment option for several types of cancer, but only a limited number of patients benefit from such therapy. Preclinical studies have suggested that the combination of PD-1 or PD-L1 inhibitors with either cytotoxic chemotherapy or antibodies to CTLA-4 is a promising treatment strategy for advanced cancer. Indeed, combinations of cytotoxic chemotherapy and PD-1/PD-L1 inhibitors have been approved and are now used in clinical practice for the treatment of advanced non-small cell lung cancer and small cell lung cancer on the basis of positive results of large-scale clinical trials. In addition, the combination of antibodies to CTLA-4 (ipilimumab) and to PD-1 (nivolumab) has been found to confer a survival benefit in patients with melanoma or renal cell carcinoma. Several ongoing clinical trials are also investigating ICI combination therapy in comparison with standard therapy for other tumor types. The identification of patients likely to achieve a sufficient benefit from PD-1/PD-L1 inhibitor monotherapy remains a challenge; however, with the establishment of novel complementary biomarkers being needed. Preclinical and clinical investigations of immune-related adverse events of ICI combination therapy are also warranted to establish management strategies. In this review, we summarize the current landscape of combination therapy with PD-1/PD-L1 inhibitors plus either cytotoxic chemotherapy or CTLA-4 inhibitors to clarify the benefits of and outstanding clinical issues related to such treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ishida Y, Agata Y, Shibahara K et al (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11(11):3887–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Latchman Y, Wood CR, Chernova T et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3):261–268. https://doi.org/10.1038/85330

    Article  CAS  PubMed  Google Scholar 

  4. Okazaki T, Chikuma S, Iwai Y et al (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14(12):1212–1218. https://doi.org/10.1038/ni.2762

    Article  CAS  PubMed  Google Scholar 

  5. Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18(3):197–218. https://doi.org/10.1038/s41573-018-0007-y

    Article  CAS  PubMed  Google Scholar 

  6. Galluzzi L, Senovilla L, Zitvogel L et al (2012) The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11(3):215–233. https://doi.org/10.1038/nrd3626

    Article  CAS  PubMed  Google Scholar 

  7. Kepp O, Galluzzi L, Martins I et al (2011) Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metast Rev 30(1):61–69. https://doi.org/10.1007/s10555-011-9273-4

    Article  CAS  Google Scholar 

  8. Krysko DV, Garg AD, Kaczmarek A et al (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12(12):860–875. https://doi.org/10.1038/nrc3380

    Article  CAS  PubMed  Google Scholar 

  9. Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61. https://doi.org/10.1038/nm1523

    Article  CAS  PubMed  Google Scholar 

  10. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059. https://doi.org/10.1038/nm1622

    Article  CAS  PubMed  Google Scholar 

  11. Ghiringhelli F, Apetoh L, Tesniere A et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15(10):1170–1178. https://doi.org/10.1038/nm.2028

    Article  CAS  PubMed  Google Scholar 

  12. Michaud M, Martins I, Sukkurwala AQ et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573–1577. https://doi.org/10.1126/science.1208347

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Till B, Gao Q (2017) Chemotherapeutic agent-mediated elimination of myeloid-derived suppressor cells. Oncoimmunology 6(7):e1331807. https://doi.org/10.1080/2162402X.2017.1331807

    Article  PubMed  PubMed Central  Google Scholar 

  14. Park JH, Jang M, Tarhan YE et al (2016) Clonal expansion of antitumor T cells in breast cancer correlates with response to neoadjuvant chemotherapy. Int J Oncol 49(2):471–478. https://doi.org/10.3892/ijo.2016.3540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Biasi AR, Villena-Vargas J, Adusumilli PS (2014) Cisplatin-induced antitumor immunomodulation: a review of preclinical and clinical evidence. Clin Cancer Res 20(21):5384–5391. https://doi.org/10.1158/1078-0432.CCR-14-1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roselli M, Cereda V, di Bari MG et al (2013) Effects of conventional therapeutic interventions on the number and function of regulatory T cells. Oncoimmunology 2(10):e27025. https://doi.org/10.4161/onci.27025

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sevko A, Michels T, Vrohlings M et al (2013) Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J Immunol 190(5):2464–2471. https://doi.org/10.4049/jimmunol.1202781

    Article  CAS  PubMed  Google Scholar 

  18. Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135. https://doi.org/10.1056/NEJMoa1504627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639. https://doi.org/10.1056/NEJMoa1507643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herbst RS, Baas P, Kim DW et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550. https://doi.org/10.1016/S0140-6736(15)01281-7

    Article  CAS  PubMed  Google Scholar 

  21. Rittmeyer A, Barlesi F, Waterkamp D et al (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389(10066):255–265. https://doi.org/10.1016/S0140-6736(16)32517-X

    Article  PubMed  Google Scholar 

  22. Reck M, Rodriguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833. https://doi.org/10.1056/NEJMoa1606774

    Article  CAS  PubMed  Google Scholar 

  23. Rizvi NA, Hellmann MD, Brahmer JR et al (2016) Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol 34(25):2969–2979. https://doi.org/10.1200/JCO.2016.66.9861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kanda S, Goto K, Shiraishi H et al (2016) Safety and efficacy of nivolumab and standard chemotherapy drug combination in patients with advanced non-small-cell lung cancer: a four arms phase Ib study. Ann Oncol 27(12):2242–2250. https://doi.org/10.1093/annonc/mdw416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gandhi L, Rodriguez-Abreu D, Gadgeel S et al (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378(22):2078–2092. https://doi.org/10.1056/NEJMoa1801005

    Article  CAS  PubMed  Google Scholar 

  26. Paz-Ares L, Luft A, Vicente D et al (2018) Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med 379(21):2040–2051. https://doi.org/10.1056/NEJMoa1810865

    Article  CAS  PubMed  Google Scholar 

  27. Burtness B, Bratland Å, Fuereder T et al (2018) LBA8_PRKEYNOTE-048: phase III study of first-line pembrolizumab (P) for recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). Ann Oncol. https://doi.org/10.1093/annonc/mdy424.045

    Article  Google Scholar 

  28. Socinski MA, Jotte RM, Cappuzzo F et al (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378(24):2288–2301. https://doi.org/10.1056/NEJMoa1716948

    Article  CAS  PubMed  Google Scholar 

  29. Reck M, Mok TSK, Nishio M et al (2019) Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. https://doi.org/10.1016/S2213-2600(19)30084-0

    Article  PubMed  Google Scholar 

  30. Gainor JF, Shaw AT, Sequist LV et al (2016) EGFR mutations and alk rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res 22(18):4585–4593. https://doi.org/10.1158/1078-0432.CCR-15-3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haratani K, Hayashi H, Tanaka T et al (2017) Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann Oncol 28(7):1532–1539. https://doi.org/10.1093/annonc/mdx183

    Article  CAS  PubMed  Google Scholar 

  32. Spigel DR, Schrock AB, Fabrizio D et al (2016) Total mutation burden (TMB) in lung cancer (LC) and relationship with response to PD-1/PD-L1 targeted therapies. J Clin Oncol 34(15_suppl):9017. https://doi.org/10.1200/JCO.2016.34.15_suppl.9017

    Article  Google Scholar 

  33. Horn L, Mansfield AS, Szczesna A et al (2018) First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N Engl J Med 379(23):2220–2229. https://doi.org/10.1056/NEJMoa1809064

    Article  CAS  PubMed  Google Scholar 

  34. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421. https://doi.org/10.1038/nature12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu H, Batenchuk C, Badzio A et al (2017) PD-L1 expression by two complementary diagnostic assays and mrna in situ hybridization in small cell lung cancer. J Thorac Oncol 12(1):110–120. https://doi.org/10.1016/j.jtho.2016.09.002

    Article  PubMed  Google Scholar 

  36. Carvajal-Hausdorf D, Altan M, Velcheti V et al (2019) Expression and clinical significance of PD-L1, B7–H3, B7–H4 and TILs in human small cell lung Cancer (SCLC). J Immunother Cancer 7(1):65. https://doi.org/10.1186/s40425-019-0540-1

    Article  PubMed  PubMed Central  Google Scholar 

  37. Langer CJ, Gadgeel SM, Borghaei H et al (2016) Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 17(11):1497–1508. https://doi.org/10.1016/S1470-2045(16)30498-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Borghaei H, Langer CJ, Gadgeel S et al (2019) 24-month overall survival from KEYNOTE-021 Cohort G: pemetrexed and carboplatin with or without pembrolizumab as first-line therapy for advanced nonsquamous non-small cell lung cancer. J Thorac Oncol 14(1):124–129. https://doi.org/10.1016/j.jtho.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  39. Zinner RG, Obasaju CK, Spigel DR et al (2015) PRONOUNCE: randomized, open-label, phase III study of first-line pemetrexed + carboplatin followed by maintenance pemetrexed versus paclitaxel + carboplatin + bevacizumab followed by maintenance bevacizumab in patients ith advanced nonsquamous non-small-cell lung cancer. J Thorac Oncol 10(1):134–142. https://doi.org/10.1097/JTO.0000000000000366

    Article  CAS  PubMed  Google Scholar 

  40. Patel JD, Hensing TA, Rademaker A et al (2009) Phase II study of pemetrexed and carboplatin plus bevacizumab with maintenance pemetrexed and bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer. J Clin Oncol 27(20):3284–3289. https://doi.org/10.1200/JCO.2008.20.8181

    Article  CAS  PubMed  Google Scholar 

  41. Rodrigues-Pereira J, Kim JH, Magallanes M et al (2011) A randomized phase 3 trial comparing pemetrexed/carboplatin and docetaxel/carboplatin as first-line treatment for advanced, nonsquamous non-small cell lung cancer. J Thorac Oncol 6(11):1907–1914. https://doi.org/10.1097/JTO.0b013e318226b5fa

    Article  PubMed  Google Scholar 

  42. Patel JD, Socinski MA, Garon EB et al (2013) PointBreak: a randomized phase III study of pemetrexed plus carboplatin and bevacizumab followed by maintenance pemetrexed and bevacizumab versus paclitaxel plus carboplatin and bevacizumab followed by maintenance bevacizumab in patients with stage IIIB or IV nonsquamous non-small-cell lung cancer. J Clin Oncol 31(34):4349–4357. https://doi.org/10.1200/JCO.2012.47.9626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Okamoto I, Aoe K, Kato T et al (2013) Pemetrexed and carboplatin followed by pemetrexed maintenance therapy in chemo-naive patients with advanced nonsquamous non-small-cell lung cancer. Invest New Drugs 31(5):1275–1282. https://doi.org/10.1007/s10637-013-9941-z

    Article  CAS  PubMed  Google Scholar 

  44. Gandhi L, Rodriguez-Abreu D, Gadgeel S et al (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. https://doi.org/10.1056/NEJMoa1801005

    Article  PubMed  Google Scholar 

  45. Weber JS, Hodi FS, Wolchok JD et al (2017) safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J Clin Oncol 35(7):785–792. https://doi.org/10.1200/JCO.2015.66.1389

    Article  CAS  PubMed  Google Scholar 

  46. Nakatani Y, Kawakami H, Ichikawa M et al (2018) Nivolumab-induced acute granulomatous tubulointerstitial nephritis in a patient with gastric cancer. Invest New Drugs 36(4):726–731. https://doi.org/10.1007/s10637-018-0596-7

    Article  CAS  PubMed  Google Scholar 

  47. Sanlorenzo M, Vujic I, Daud A et al (2015) Pembrolizumab cutaneous adverse events and their association with disease progression. JAMA Dermatol 151(11):1206–1212. https://doi.org/10.1001/jamadermatol.2015.1916

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nakamura Y, Tanaka R, Asami Y et al (2017) Correlation between vitiligo occurrence and clinical benefit in advanced melanoma patients treated with nivolumab: a multi-institutional retrospective study. J Dermatol 44(2):117–122. https://doi.org/10.1111/1346-8138.13520

    Article  CAS  PubMed  Google Scholar 

  49. Hua C, Boussemart L, Mateus C et al (2016) Association of vitiligo with tumor response in patients with metastatic melanoma treated with pembrolizumab. JAMA Dermatol 152(1):45–51. https://doi.org/10.1001/jamadermatol.2015.2707

    Article  PubMed  Google Scholar 

  50. Freeman-Keller M, Kim Y, Cronin H et al (2016) Nivolumab in resected and unresectable metastatic melanoma: characteristics of immune-related adverse events and association with outcomes. Clin Cancer Res 22(4):886–894. https://doi.org/10.1158/1078-0432.CCR-15-1136

    Article  CAS  PubMed  Google Scholar 

  51. Teulings HE, Limpens J, Jansen SN et al (2015) Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J Clin Oncol 33(7):773–781. https://doi.org/10.1200/JCO.2014.57.4756

    Article  CAS  PubMed  Google Scholar 

  52. Haratani K, Hayashi H, Chiba Y et al (2018) Association of immune-related adverse events with nivolumab efficacy in non-small-cell lung cancer. JAMA Oncol 4(3):374–378. https://doi.org/10.1001/jamaoncol.2017.2925

    Article  PubMed  Google Scholar 

  53. Teraoka S, Fujimoto D, Morimoto T et al (2017) Early Immune-related adverse events and association with outcome in advanced non-small cell lung cancer patients treated with nivolumab: a prospective cohort study. J Thorac Oncol 12(12):1798–1805. https://doi.org/10.1016/j.jtho.2017.08.022

    Article  PubMed  Google Scholar 

  54. Sato K, Akamatsu H, Murakami E et al (2018) Correlation between immune-related adverse events and efficacy in non-small cell lung cancer treated with nivolumab. Lung Cancer 115:71–74. https://doi.org/10.1016/j.lungcan.2017.11.019

    Article  PubMed  Google Scholar 

  55. Kimbara S, Fujiwara Y, Iwama S et al (2018) Association of antithyroglobulin antibodies with the development of thyroid dysfunction induced by nivolumab. Cancer Sci 109(11):3583–3590. https://doi.org/10.1111/cas.13800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Collins AV, Brodie DW, Gilbert RJ et al (2002) The interaction properties of costimulatory molecules revisited. Immunity 17(2):201–210

    Article  CAS  PubMed  Google Scholar 

  57. Walker LS, Sansom DM (2011) The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol 11(12):852–863. https://doi.org/10.1038/nri3108

    Article  CAS  PubMed  Google Scholar 

  58. Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3(7):611–618. https://doi.org/10.1038/ni0702-611

    Article  CAS  PubMed  Google Scholar 

  59. Takahashi T, Tagami T, Yamazaki S et al (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192(2):303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Melero I, Hervas-Stubbs S, Glennie M et al (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7(2):95–106. https://doi.org/10.1038/nrc2051

    Article  CAS  PubMed  Google Scholar 

  61. Warner AB, Postow MA (2018) Combination controversies: checkpoint inhibition alone or in combination for the treatment of melanoma? Oncology (Williston Park) 32(5):228–234

    Google Scholar 

  62. Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34. https://doi.org/10.1056/NEJMoa1504030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wolchok JD, Chiarion-Sileni V, Gonzalez R et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356. https://doi.org/10.1056/NEJMoa1709684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Motzer RJ, Tannir NM, McDermott DF et al (2018) Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 378(14):1277–1290. https://doi.org/10.1056/NEJMoa1712126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Namikawa K, Kiyohara Y, Takenouchi T et al (2018) Efficacy and safety of nivolumab in combination with ipilimumab in Japanese patients with advanced melanoma: an open-label, single-arm, multicentre phase II study. Eur J Cancer 105:114–126. https://doi.org/10.1016/j.ejca.2018.09.025

    Article  CAS  PubMed  Google Scholar 

  66. Hellmann MD, Ciuleanu TE, Pluzanski A et al (2018) Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 378(22):2093–2104. https://doi.org/10.1056/NEJMoa1801946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Goodman AM, Kato S, Bazhenova L et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16(11):2598–2608. https://doi.org/10.1158/1535-7163.MCT-17-0386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128. https://doi.org/10.1126/science.aaa1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rizvi H, Sanchez-Vega F, La K et al (2018) Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 36(7):633–641. https://doi.org/10.1200/JCO.2017.75.3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gandara DR, Paul SM, Kowanetz M et al (2018) Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med 24(9):1441–1448. https://doi.org/10.1038/s41591-018-0134-3

    Article  CAS  PubMed  Google Scholar 

  71. Schadendorf D, Hodi FS, Robert C et al (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894. https://doi.org/10.1200/JCO.2014.56.2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Hayashi.

Ethics declarations

Conflict of interest

H. Hayashi has received honoraria from AstraZeneca K.K., Boehringer Ingelheim Japan Inc., Bristol-Myers Squibb Co. Ltd., Chugai Pharmaceutical Co. Ltd., Eli Lilly Japan K.K., MSD K.K., Ono Pharmaceutical Co. Ltd., Pfizer Japan Inc., and Taiho Pharmaceutical Co. Ltd. as well as research funding from AbbVie Inc., AC MEDICAL Inc., Astellas Pharma Inc., AstraZeneca K.K., Boehringer Ingelheim Japan Inc., Bristol-Myers Squibb Co. Ltd., Daiichi Sankyo Co. Ltd., Eisai Co. Ltd., Eli Lilly Japan K.K., EPS Associates Co. Ltd., GlaxoSmithKline K.K., Japan Clinical Research Operations Co. Ltd., Kyowa Hakko Kirin Co. Ltd., Merck Serono Co. Ltd., MSD K.K., Novartis Pharma K.K., Ono Pharmaceutical Co. Ltd., Otsuka Pharmaceutical Co. Ltd., PAREXEL International Corp., Pfizer Japan Inc., PPD-SNBL K.K., Quintiles Transnational Japan K.K., Taiho Pharmaceutical Co. Ltd., Takeda Pharmaceutical Co. Ltd., and Yakult Honsha Co. Ltd. Y. Nakagawa has received honoraria from Astellas Pharma Inc., AstraZeneca K.K., Boehringer Ingelheim Japan Inc., Bristol-Myers Squibb Co. Ltd., Chugai Pharmaceutical Co. Ltd., Clinical Trial Co. Ltd., Eli Lilly Japan K.K., MSD K.K., Nichi-Iko Pharmaceutical Co. Ltd., Novartis Pharma K.K., Ono Pharmaceutical Co. Ltd., Pfizer Japan Inc., Reno. Medical K.K., and Sym Bio Pharmaceuticals Ltd.; research funding from A2 Healthcare Corp., AbbVie Inc., Astellas Pharma Inc., Boehringer Ingelheim Japan Inc., Bristol-Myers Squibb Co. Ltd., Chugai Pharmaceutical Co. Ltd., Daiichi Sankyo Co. Ltd., Eisai Co. Ltd., Eli Lilly Japan K.K., EP-CRSU Co. Ltd., GRITSTONE ONCOLOGY Inc., ICON Japan K.K., inVentiv Health Japan, MSD K.K., Linical Co. Ltd., Novartis Pharma K.K., Ono Pharmaceutical Co. Ltd., PAREXEL International Corp., Pfizer Japan Inc., Quintiles, Taiho Pharmaceutical Co. Ltd., and Takeda Pharmaceutical Co. Ltd.; and consulting or advisory fees from Astellas Pharma Inc., Ono Pharmaceutical Co. Ltd., and Takeda Pharmaceutical Co. Ltd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, H., Nakagawa, K. Combination therapy with PD-1 or PD-L1 inhibitors for cancer. Int J Clin Oncol 25, 818–830 (2020). https://doi.org/10.1007/s10147-019-01548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-019-01548-1

Keywords

Navigation