Skip to main content

Advertisement

Log in

Fc gamma receptors and cancer

  • Review
  • Published:
Springer Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

FcγRs are a family of heterogeneous molecules that play opposite roles in immune response and control the effector functions of IgG antibodies. In many cancers, IgG antibodies are produced that recognize cancer cells, form immune complexes and therefore, activate FcγR. The therapeutic efficacy of monoclonal IgG antibodies against hematopoietic and epithelial tumors also argue for an important role of IgG antibodies in anti-tumor defenses. Since the 1980s, a series of lines of evidence in experimental models and in humans strongly suggest that FcγR are involved in the therapeutic activity of monoclonal IgG antibodies by activating the cytotoxic activity of FcγR-positive cells such as NK cells, monocytes, macrophages and neutrophils and by increasing antigen presentation by dendritic cells. Since many cell types co-express activating and inhibitory FcγR, the FcγR-dependent effector functions of IgG anti-tumor antibodies are counterbalanced by the inhibitory FcγRIIB. In addition, some tumor cells express FcγR either constitutively, such as B cell lymphomas or ectopically, such as 40% of human metastatic melanoma. The tumor FcγR isoform is preferentially FcγRIIB, which is functional at least in human metastatic melanoma. This review summarizes these data and discusses how FcγRIIB expression may influence the anti-tumor immune reaction and how beneficial or deleterious this expression could be for the efficiency of therapeutics based on monoclonal anti-tumor antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hulett MD, Hogarth PM (1994) Molecular basis of Fc receptor function. Adv Immunol 57:1–127

    PubMed  CAS  Google Scholar 

  2. Fridman WH, Bonnerot C, Daeron M, Amigorena S, Teillaud JL, Sautes C (1992) Structural bases of Fc gamma receptor functions. Immunol Rev 125:49–76

    Article  PubMed  CAS  Google Scholar 

  3. Takai T (2005) Fc receptors and their role in immune regulation and autoimmunity. J Clin Immunol 25:1–18

    Article  PubMed  CAS  Google Scholar 

  4. Deo YM, Graziano RF, Repp R, van de Winkel JG (1997) Clinical significance of IgG Fc receptors and Fc gamma R-directed immunotherapies. Immunol Today 18:127–135

    Article  PubMed  CAS  Google Scholar 

  5. Amigorena S, Bonnerot C, Drake JR, Choquet D, Hunziker W, Guillet JG, Webster P, Sautes C, Mellman I, Fridman WH (1992) Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes. Science 256:1808–1812

    Article  PubMed  CAS  Google Scholar 

  6. Van den Herik-Oudijk IE, Capel PJ, van der Bruggen T, van de Winkel JG (1995) Identification of signaling motifs within human Fc gamma RIIa and Fc gamma RIIb isoforms. Blood 85:2202–2211

    PubMed  Google Scholar 

  7. Daeron M (1997) Fc receptor biology. Annu Rev Immunol 15:203–234

    Article  PubMed  CAS  Google Scholar 

  8. Sarmay G, Koncz G, Gergely J (1996) Integration of activatory and inhibitory signals in human B-cells. Immunol Lett 54:93–100

    Article  PubMed  CAS  Google Scholar 

  9. Isnardi I, Bruhns P, Bismuth G, Fridman WH, Daeron M (2006) The SH2 domain-containing inositol 5-phosphatase SHIP1 is recruited to the intracytoplasmic domain of human FcgammaRIIB and is mandatory for negative regulation of B cell activation. Immunol Lett 104:156–165

    Article  PubMed  CAS  Google Scholar 

  10. Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A 92:11810–11813

    Article  PubMed  CAS  Google Scholar 

  11. Jager E, Chen YT, Drijfhout JW, Karbach J, Ringhoffer M, Jager D, Arand M, Wada H, Noguchi Y, Stockert E, Old LJ, Knuth A (1998) Simultaneous humoral and cellular immune response against cancer–testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 187:265–270

    Article  PubMed  CAS  Google Scholar 

  12. Lake DF, Huynh WC, Hersh EM (2000) Natural and induced human antibody response to cancer. Cancer Invest 18:480–489

    PubMed  CAS  Google Scholar 

  13. Ragupathi G, Meyers M, Adluri S, Howard L, Musselli C, Livingston PO (2000) Induction of antibodies against GD3 ganglioside in melanoma patients by vaccination with GD3-lactone-KLH conjugate plus immunological adjuvant QS-21. Int J Cancer 85:659–666

    Article  PubMed  CAS  Google Scholar 

  14. Lutzky J, Gonzalez-Angulo AM, Orzano JA (2002) Antibody-based vaccines for the treatment of melanoma. Semin Oncol 29:462–470

    Article  PubMed  CAS  Google Scholar 

  15. Ehlken H, Schadendorf D, Eichmuller S (2004) Humoral immune response against melanoma antigens induced by vaccination with cytokine gene-modified autologous tumor cells. Int J Cancer 108:307–313

    Article  PubMed  CAS  Google Scholar 

  16. White CA, Weaver RL, Grillo-Lopez AJ (2001) Antibody-targeted immunotherapy for treatment of malignancy. Annu Rev Med 52:125–145

    Article  PubMed  CAS  Google Scholar 

  17. Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6:343–357

    Article  PubMed  CAS  Google Scholar 

  18. Akiyama K, Ebihara S, Yada A, Matsumura K, Aiba S, Nukiwa T, Takai T (2003) Targeting apoptotic tumor cells to Fc gamma R provides efficient and versatile vaccination against tumors by dendritic cells. J Immunol 170:1641–1648

    PubMed  CAS  Google Scholar 

  19. Rafiq K, Bergtold A, Clynes R (2002) Immune complex-mediated antigen presentation induces tumor immunity. J Clin Invest 110:71–79

    Article  PubMed  CAS  Google Scholar 

  20. Adams DO, Hall T, Steplewski Z, Koprowski H (1984) Tumors undergoing rejection induced by monoclonal antibodies of the IgG2a isotype contain increased numbers of macrophages activated for a distinctive form of antibody-dependent cytolysis. Proc Natl Acad Sci U S A 81:3506–3510

    Article  PubMed  CAS  Google Scholar 

  21. Denkers EY, Badger CC, Ledbetter JA, Bernstein ID (1985) Influence of antibody isotype on passive serotherapy of lymphoma. J Immunol 135:2183–2186

    PubMed  CAS  Google Scholar 

  22. Maloney DG, Liles TM, Czerwinski DK, Waldichuk C, Rosenberg J, Grillo-Lopez A, Levy R (1994) Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84:2457–2466

    PubMed  CAS  Google Scholar 

  23. Dyer MJ, Hale G, Hayhoe FG, Waldmann H (1989) Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood 73:1431–1439

    PubMed  CAS  Google Scholar 

  24. Clynes R, Takechi Y, Moroi Y, Houghton A, Ravetch JV (1998) Fc receptors are required in passive and active immunity to melanoma. Proc Natl Acad Sci U S A 95:652–656

    Article  PubMed  CAS  Google Scholar 

  25. Bevaart L, Jansen MJ, van Vugt MJ, Verbeek JS, van de Winkel JG, Leusen JH (2006) The high-affinity IgG receptor, FcgammaRI, plays a central role in antibody therapy of experimental melanoma. Cancer Res 66:1261–1264

    Article  PubMed  CAS  Google Scholar 

  26. Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310:1510–1512

    Article  PubMed  CAS  Google Scholar 

  27. Nimmerjahn F, Ravetch JV (2006) Fcgamma receptors: old friends and new family members. Immunity 24:19–28

    Article  PubMed  CAS  Google Scholar 

  28. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758

    Article  PubMed  CAS  Google Scholar 

  29. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6:443–446

    Article  PubMed  CAS  Google Scholar 

  30. van Spriel AB, van Ojik HH, van de Winkel JG (2000) Immunotherapeutic perspective for bispecific antibodies. Immunol Today 21:391–397

    Article  PubMed  Google Scholar 

  31. Berends D, van der Kwast TH, de Both NJ, Mulder PG (1989) Factors influencing antibody-mediated cytotoxicity during the immunotherapy of Rauscher-virus-induced myeloid leukemic cells. Cancer Immunol Immunother 28:123–130

    Article  PubMed  CAS  Google Scholar 

  32. van Spriel AB, van Ojik HH, Bakker A, Jansen MJ, van de Winkel JG (2003) Mac-1 (CD11b/CD18) is crucial for effective Fc receptor-mediated immunity to melanoma. Blood 101:253–258

    Article  PubMed  Google Scholar 

  33. Sedmak DD, Davis DH, Singh U, van de Winkel JG, Anderson CL (1991) Expression of IgG Fc receptor antigens in placenta and on endothelial cells in humans. An immunohistochemical study. Am J Pathol 138:175–181

    PubMed  CAS  Google Scholar 

  34. Lyden TW, Robinson JM, Tridandapani S, Teillaud JL, Garber SA, Osborne JM, Frey J, Budde P, Anderson CL (2001) The Fc receptor for IgG expressed in the villus endothelium of human placenta is Fc gamma RIIb2. J Immunol 166:3882–3889

    PubMed  CAS  Google Scholar 

  35. Hussain LA, Kelly CG, Hecht EM, Fellowes R, Jourdan M, Lehner T (1991) The expression of Fc receptors for immunoglobulin G in human rectal epithelium. AIDS 5:1089–1094

    Article  PubMed  CAS  Google Scholar 

  36. Estienne V, Duthoit C, Reichert M, Praetor A, Carayon P, Hunziker W, Ruf J (2002) Androgen-dependent expression of FcgammaRIIB2 by thyrocytes from patients with autoimmune Graves’ disease: a possible molecular clue for sex dependence of autoimmune disease. FASEB J 16:1087–1092

    Article  PubMed  CAS  Google Scholar 

  37. Milgrom F, Humphrey LJ, Tonder O, Yasuda J, Witebsky E (1968) Antibody-mediated hemadsorption by tumor tissues. Int Arch Allergy Appl Immunol 33:478–492

    PubMed  CAS  Google Scholar 

  38. Tonder O, Thunold S (1973) Receptors for immunoglobulin Fc in human malignant tissues. Scand J Immunol 2:207–215

    Article  PubMed  CAS  Google Scholar 

  39. Witz IP (1973) The biological significance of tumor-bound immunoglobulins. Curr Top Microbiol Immunol 61:151–171

    PubMed  CAS  Google Scholar 

  40. Biran H, Mavligit GM, Moake JL (1979) Receptor sites for complement and for immune complexes on human nonhemopoietic tumor cells. Cancer 44:131–135

    Article  PubMed  CAS  Google Scholar 

  41. Noltenius HW (1981) Fc and complement receptors on malignant tumor cells. Cancer 48:1761–1767

    Article  PubMed  CAS  Google Scholar 

  42. Braslawsky GR, Serban D, Witz IP (1976) Receptors for immune complexes on cells within a polyoma virus-induced murine sarcoma. Eur J Immunol 6:579–583

    PubMed  CAS  Google Scholar 

  43. Svennevig JL, Andersson TR (1982) Cells bearing Fc receptors in human malignant solid tumours. Br J Cancer 45:201–208

    PubMed  CAS  Google Scholar 

  44. Ran M, Teillaud JL, Fridman WH, Frenkel H, Halachmi E, Katz B, Gips M, Shlomo Y, Barzilay J, Witz IP (1988) Increased expression of Fc gamma receptor in cancer patients and tumor bearing mice. Mol Immunol 25:1159–1167

    Article  PubMed  CAS  Google Scholar 

  45. Ran M, Katz B, Kimchi N, Halachmi E, Teillaud JL, Even J, Berko-Flint Y, Atlas E, Fridman WH, Witz IP (1991) In vivo acquisition of Fc gamma RII expression on polyoma virus-transformed cells derived from tumors of long latency. Cancer Res 51:612–618

    PubMed  CAS  Google Scholar 

  46. Szymaniec S, James K (1976) Studies on the Fc receptor bearing cells in a transplanted methylcholanthrene induced mouse fibrosarcoma. Br J Cancer 33:36–50

    PubMed  CAS  Google Scholar 

  47. Gorini G, Ciotti MT, Starace G, Vigneti E, Raschella G (1992) Fc gamma receptors are expressed on human neuroblastoma cell lines: lack of correlation with N-myc oncogene activity. Int J Neurosci 62:287–297

    PubMed  CAS  Google Scholar 

  48. Cassard L, Cohen-Solal JF, Galinha A, Sastre-Garau X, Mathiot C, Galon J, Dorval T, Bernheim A, Fridman WH, Sautes-Fridman C (2002) Modulation of tumor growth by inhibitory Fc(gamma) receptor expressed by human melanoma cells. J Clin Invest 110:1549–1557

    Article  PubMed  CAS  Google Scholar 

  49. Neauport-Sautes C, Daeron M, Teillaud JL, Blank U, Fridman WH (1986) The occurrence, structural and functional properties of immunoglobulin Fc receptors on murine neoplastic cells. Int Rev Immunol 1:237–271

    PubMed  CAS  Google Scholar 

  50. Tridandapani S, Siefker K, Teillaud JL, Carter JE, Wewers MD, Anderson CL (2002) Regulated expression and inhibitory function of Fcgamma RIIb in human monocytic cells. J Biol Chem 277:5082–5089

    Article  PubMed  CAS  Google Scholar 

  51. Langer AB, Emmanuel N, Even J, Fridman WH, Gohar O, Gonen B, Katz BZ, Ran M, Smorodinsky NI, Witz IP (1992) Phenotypic properties of 3T3 cells transformed in vitro with polyoma virus and passaged once in syngeneic animals. Immunobiology 185:281–291

    PubMed  CAS  Google Scholar 

  52. Zusman T, Lisansky E, Arons E, Anavi R, Bonnerot C, Sautes C, Fridman WH, Witz IP, Ran M (1996) Contribution of the intracellular domain of murine Fc-gamma receptor type IIB1 to its tumor-enhancing potential. Int J Cancer 68:219–227

    Article  PubMed  CAS  Google Scholar 

  53. Witz IP, Ran M (1992) FcR may function as a progression factor of nonlymphoid tumors. Immunol Res 11:283–295

    Article  PubMed  CAS  Google Scholar 

  54. Azeredo da Silveira S, Kikuchi S, Fossati-Jimack L, Moll T, Saito T, Verbeek JS, Botto M, Walport MJ, Carroll M, Izui S (2002) Complement activation selectively potentiates the pathogenicity of the IgG2b and IgG3 isotypes of a high affinity anti-erythrocyte autoantibody. J Exp Med 195:665–672

    Article  PubMed  CAS  Google Scholar 

  55. Camilleri-Broet S, Cassard L, Broet P, Delmer A, Le Touneau A, Diebold J, Fridman WH, Molina TJ, Sautes-Fridman C (2004) FcgammaRIIB is differentially expressed during B cell maturation and in B-cell lymphomas. Br J Haematol 124:55–62

    Article  PubMed  CAS  Google Scholar 

  56. Rao SP, Vora KA, Manser T (2002) Differential expression of the inhibitory IgG Fc receptor FcgammaRIIB on germinal center cells: implications for selection of high-affinity B cells. J Immunol 169:1859–1868

    PubMed  CAS  Google Scholar 

  57. Pulford K, Ralfkiaer E, MacDonald SM, Erber WN, Falini B, Gatter KC, Mason DY (1986) A new monoclonal antibody (KB61) recognizing a novel antigen which is selectively expressed on a subpopulation of human B lymphocytes. Immunology 57:71–76

    PubMed  CAS  Google Scholar 

  58. Macardle PJ, Mardell C, Bailey S, Wheatland L, Ho A, Jessup C, Roberton DM, Zola H (2002) FcgammaRIIb expression on human germinal center B lymphocytes. Eur J Immunol 32:3736–3744

    Article  PubMed  CAS  Google Scholar 

  59. Pearse RN, Kawabe T, Bolland S, Guinamard R, Kurosaki T, Ravetch JV (1999) SHIP recruitment attenuates Fc gamma RIIB-induced B cell apoptosis. Immunity 10:753–760

    Article  PubMed  CAS  Google Scholar 

  60. Itoyama T, Nanjungud G, Chen W, Dyomin VG, Teruya-Feldstein J, Jhanwar SC, Zelenetz AD, Chaganti RS (2002) Molecular cytogenetic analysis of genomic instability at the 1q12–22 chromosomal site in B-cell non-Hodgkin lymphoma. Genes Chromosomes Cancer 35:318–328

    Article  PubMed  CAS  Google Scholar 

  61. Callanan MB, Le Baccon P, Mossuz P, Duley S, Bastard C, Hamoudi R, Dyer MJ, Klobeck G, Rimokh R, Sotto JJ, Leroux D (2000) The IgG Fc receptor, FcgammaRIIB, is a target for deregulation by chromosomal translocation in malignant lymphoma. Proc Natl Acad Sci U S A 97:309–314

    Article  PubMed  CAS  Google Scholar 

  62. Chen W, Palanisamy N, Schmidt H, Teruya-Feldstein J, Jhanwar SC, Zelenetz AD, Houldsworth J, Chaganti RS (2001) Deregulation of FCGR2B expression by 1q21 rearrangements in follicular lymphomas. Oncogene 20:7686–7693

    Article  PubMed  CAS  Google Scholar 

  63. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson Jr J, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  PubMed  CAS  Google Scholar 

  64. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, Morel P, Van Den Neste E, Salles G, Gaulard P, Reyes F, Lederlin P, Gisselbrecht C (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346:235–242

    Article  PubMed  CAS  Google Scholar 

  65. Camilleri-Broet S, Mounier N, Delmer A, Briere J, Casasnovas O, Cassard L, Gaulard P, Christian B, Coiffier B, Sautes-Fridman C (2004) FcgammaRIIB expression in diffuse large B-cell lymphomas does not alter the response to CHOP+rituximab (R-CHOP). Leukemia 18:2038–2040

    Article  PubMed  CAS  Google Scholar 

  66. Rankin CT, Veri MC, Gorlatov S, Tuaillon N, Burke S, Huang L, Inzunza HD, Li H, Thomas S, Johnson S, Stavenhagen J, Koenig S, Bonvini E (2006) CD32B, the human inhibitory Fc-gamma receptor IIB, as a target for monoclonal antibody therapy of B-cell lymphoma. Blood 108:2384–2391

    Article  PubMed  CAS  Google Scholar 

  67. Tartour E, de La Salle H, de La Salle C, Teillaud C, Camoin L, Galinha A, Latour S, Hanau D, Fridman WH, Sautes C (1993) Identification, in mouse macrophages and serum, of a soluble receptor for the Fc portion of IgG (Fc>=R) encoded by an alternatively spliced transcript of the Fc>=RII gene. Intern Immunol 5:859–868

    CAS  Google Scholar 

  68. Fridman WH, Teillaud JL, Bouchard C, Teillaud C, Astier A, Tartour E, Galon J, Mathiot C, Sautes C (1993) Soluble Fc gamma receptors. J Leukoc Biol 54:504–512

    PubMed  CAS  Google Scholar 

  69. Astier A, de la Salle H, de la Salle C, Bieber T, Esposito-Farese ME, Freund M, Cazenave JP, Fridman WH, Teillaud JL, Hanau D (1994) Human epidermal Langerhans cells secrete a soluble receptor for IgG (Fc gamma RII/CD32) that inhibits the binding of immune complexes to Fc gamma R+ cells. J Immunol 152:201–212

    PubMed  CAS  Google Scholar 

  70. Astier A, Merle-Beral H, de la Salle H, Moncuit J, Cazenave JP, Fridman WH, Hanau D, Teillaud JL (1997) Soluble Fcgamma receptor, Fc gammaRIIa2, is present in two forms in human serum and is increased in patients: with stage C chronic lymphocytic leukemia. Leuk Lymphoma 26:317–326

    PubMed  CAS  Google Scholar 

  71. Galon J, Moldovan I, Galinha A, Provost-Marloie MA, Kaudewitz H, Roman-Roman S, Fridman WH, Sautes C (1998) Identification of the cleavage site involved in production of plasma soluble Fc gamma receptor type III (CD16). Eur J Immunol 28:2101–2107

    Article  PubMed  CAS  Google Scholar 

  72. Wines BD, Gavin A, Powell MS, Steinitz M, Buchanan RR, Mark Hogarth P (2003) Soluble FcgammaRIIa inhibits rheumatoid factor binding to immune complexes. Immunology 109:246–254

    Article  PubMed  CAS  Google Scholar 

  73. Enyedy EJ, Mitchell JP, Nambiar MP, Tsokos GC (2001) Defective FcgammaRIIb1 signaling contributes to enhanced calcium response in B cells from patients with systemic lupus erythematosus. Clin Immunol 101:130–135

    Article  PubMed  CAS  Google Scholar 

  74. Oka T, Ouchida M, Koyama M, Ogama Y, Takada S, Nakatani Y, Tanaka T, Yoshino T, Hayashi K, Ohara N, Kondo E, Takahashi K, Tsuchiyama J, Tanimoto M, Shimizu K, Akagi T (2002) Gene silencing of the tyrosine phosphatase SHP1 gene by aberrant methylation in leukemias/lymphomas. Cancer Res 62:6390–6394

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank T. Dorval, X. Sastre-Garrau, C. Mathiot, P. Broët, A. Delmer, J. Diebold, T. J. Molina and the GELA for their contributions in the studies described herein. Financial support was given by the Association pour la Recherche contre le Cancer (ARC-ARECA) and the Institut National de la Santé et de la Recherche Medicale (INSERM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Sautès-Fridman.

Additional information

Lydie Cassard and Joël Cohen-Solal have equal contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassard, L., Cohen-Solal, J., Camilleri-Broët, S. et al. Fc gamma receptors and cancer. Springer Semin Immun 28, 321–328 (2006). https://doi.org/10.1007/s00281-006-0058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-006-0058-8

Keywords

Navigation