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The rapidly evolving realm of single-cell transcriptomics offers 

vital new perspectives into the understanding of intra- and 

inter-cellular molecular dynamics governing development, 

physiology, and pathogenesis. Deep learning, a recent artificial 

intelligence advance with a promising application for big data, 

has demonstrated potential in the field of single-cell analysis1. 

Deep learning exhibits flexibility in extracting informative fea-

tures from noisy, high-dimensional, single-cell RNA sequenc-

ing (scRNA-seq) data and enhances downstream analyses. 

We surveyed recent deep-learning methods that advance sin-

gle-cell analysis and offer a glimpse into what the future holds.

An overview of methods for analysing 
single-cell transcriptomes

The methods for single-cell analysis can be broadly catego-

rized into statistical models and deep-learning methods.

Statistical modelling is a fundamental computational 

method in bioinformatics. Statistical modelling has been 

widely used in bulk tissue and single-cell transcriptome anal-

ysis. These methods include principal component analysis, 

canonical correlation analysis, and non-negative matrix fac-

torization. Seurat2 utilized canonical correlation analysis to 

identify correlations among different datasets to construct 

mutual nearest neighbours for batch correction. MOFA+3 is 

built upon Bayesian group factor analysis to simultaneously 

capture variations across spatial and temporal covariates. In 

addition, MOFA+ handles shared and private sources of vari-

ations among different data modalities. scAI4 employs matrix 

factorization to integrate sparse single-cell expression and epi-

genetic profiles to aggregate sparse signals in similar cells, pro-

moting consistent fusion with transcriptomic measurements.

In the realm of single-cell research, there is a paradigm shift 

from statistical models to deep-learning methods. Statistical 

models inherently face limitations when handling large-scale 

high-dimensional, non-linear, and complex structures in 

single- cell transcriptome data. Statistical models typically rely 

on prior assumptions and the modelling of linear relation-

ships, which may manifest as an oversimplification when ana-

lysing single-cell transcriptome data. The complexity of sin-

gle-cell transcriptome data involves non-linear relationships 

and a highly dimensional feature space, posing challenges 

for traditional statistical models in capturing the inherent 

complexity of the data. In addition, limited scalability poses 

challenges for statistical models when analysing the mounting 

volume of large-scale single-cell data over time2. Moreover, 

statistical models often require manual feature engineering. 

The characteristics of single cells can be influenced by mul-

tiple factors, which makes it difficult to comprehensively cap-

ture the characteristics through manually designed features. 

In this evolving field, a deep learning-based method offers 

researchers a powerful and flexible tool to better accommodate 

the diversity and dynamics of single-cell transcriptome data. 

The deep-learning method, through multi-layered non-linear 

transformations, adaptively learns features from the high-di-

mensional data without the need for predefined assumptions. 

The increased use of deep learning is aimed at surpassing 

the limitations of statistical models and comprehensively 
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understanding and interpreting the intrinsic complexity of 

single-cell transcriptome data.

Deep learning, well known for remarkable advances in com-

puter vision and natural language processing tasks, harnesses 

large-scale datasets to build models for downstream tasks. 

Deep learning has been successfully used to analyze single-cell 

data to improve our understanding of cellular processes1. 

Figure 1 illustrates different types of fundamental deep-learn-

ing paradigms for single-cell transcriptome analysis.

Deep-learning methods can be categorized into unsu-

pervised and supervised learning methods. In an unsuper-

vised learning setting, the deep-learning model is trained on 

unlabelled data to uncover hidden patterns without explicit 

guidance. This paradigm is widely used for clustering cells, 

identifying cell subpopulations, and exploring the relation-

ship between cell clusters and phenotypes5,6. Self-supervised 

learning represents a subtype of unsupervised learning, in 

which the model acquires knowledge by predicting specific 

elements of input data, frequently through the generation of 

pseudo-labels derived from the data7. Self-supervised learning 

is widely used in representation learning and dimensionality 

reduction8. The model is trained using labelled data in super-

vised learning. Supervised learning is used for tasks, such as 

cell type classification and denoising, in which labelled data 

are needed for training9. Semisupervised learning, as a subtype 

of supervised learning, can help bridge the gap in scenarios 

where labelled data are limited but abundant unlabelled data 

are available. Semisupervised learning is frequently used in cell 

type classification and gene-phenotype association10.

Deep-learning models commonly used in single-cell tran-

scriptome deciphering include feed-forward networks (FFNs), 

autoencoders, variational autoencoders (VAEs), generative 

adversarial networks (GANs), graph neural networks (GNNs), 

and transformers11-13.

FFNs consist of multiple linear layers. FFNs are often used 

in supervised learning tasks. For example, DeepImpute14 uti-

lizes a deep FFN to acquire insight into gene expression pat-

terns and impute missing values in scRNA-seq data.

The deep autoencoder11 consists of an encoder and a decoder. 

The encoder is used to learn a compressed representation of the 

input. The decoder reconstructs the original input from this 

compressed representation. Applications of autoencoders extend 

across a broad spectrum of unsupervised learning tasks. For 

example, DESC applies an autoencoder to learn low-dimensional 

features of single-cell expression and performs clustering in the 

latent space to reduce the influence of batch effects iteratively15.

A VAE12 is a variant of an autoencoder. The advantage of 

VAEs over traditional autoencoders is the ability to generate 

data with uncertainty estimates. VAEs introduce Gaussian 

probabilistic modelling in the encoding process, allowing 

the model to capture the underlying probability distribution 

of the data. This leads to a more continuous and structured 

latent space, making it useful for tasks, such as data genera-

tion, interpolation, and denoising5,16. Single-cell variational 

inference (scVI)5 takes batch information into a VAE for batch 

correction. Single-cell annotation using variational inference 

(scANVI)16 is a semi-supervised adaptation of scVI. scANVI 

uses a mixture model to replace the Gaussian distribution for 

latent representations and overcomes the over-regularization 

issues when applied for cell state representation.

The GAN model17 consists of a generator and a discrimi-

nator that are trained in a competitive fashion. The genera-

tor learns to produce data that are indistinguishable from real 

data, while the discriminator learns to differentiate between 

real data and the fake data generated by the generator, leading 

to the generation of highly realistic synthetic data17. GANs are 

often used in generating realistic data, while autoencoders are 

often used in preserving feature representations in the latent 

space. Integration of multiple single-cell datasets by adversar-

ial paired-style transfer networks integration (iMAP) com-

bines the strengths of both autoencoders and GANs to achieve 

high-fidelity dimensionality reduction.

GNNs13 are designed to learn feature representations by 

propagating information through graph connections. GNNs 

excel at learning complicated associations by capturing depend-

encies between connected data points. Built upon GNNs, sin-

gle-cell transcriptomics that uses a deep learning model with 

a weighted graph neural network (scDeepSort)18 constructs a 

cell-gene graph through pre-training on large-scale single-cell 

transcriptome data, leveraging the advantages of GNN to unveil 

complex cell relationships for downstream cell type annotation 

and elucidation of cellular interaction networks.

The transformer19 consists of self-attention mechanisms 

and feed-forward neural networks, enabling the transformer 

to learn contextual information of sequential data by cap-

turing long-range dependencies across various positions. 

Transformer-based deep neural networks (DNNs) are con-

tinuing to revolutionize natural language understanding and 

computer vision.

Artificial intelligence is undergoing a paradigm shift with 

the rise in models trained on broad data that can be adapted to 

a wide range of downstream tasks. These models are referred 
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Figure 1 Summary of deep-learning model architectures and applications for single-cell analyses.
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to as foundation models. The transformer architecture under-

lies the success of foundation models due to high expressivity 

and scalability. Transformer-based DNNs are able to capture 

rich information from large-scale different types of datasets 

and generalize to new contexts. Because large-scale, single-cell 

data become increasingly accessible, transformer-based DNNs 

are being used for self-supervised pretraining with single-cell 

transcriptomes20-22. These pretrained models shed insight into 

gene–gene and gene-phenotype correlations. The pretrained 

models could serve as foundation models for subsequent 

fine-tuning in downstream tasks for cell-type annotation, 

gene-network analysis, and prediction of response for cancer 

patients who received immunotherapy treatment.

Deep learning-based methods for 
large-scale single-cell transcriptomes

Advances in single-cell sequencing have led to the establishment 

of several public repositories housing large-scale, single-cell 

transcriptome data, such as the Human Cell Atlas (HCA), Single-

Cell Expression Atlas, and Mouse Cell Atlas23. The HCA project23 

is dedicated to curating trillions of single cells and constructing 

a comprehensive reference map of all human cells. Deep learn-

ing-based methods are well-suited for deciphering these excep-

tionally large-scale, single-cell transcriptome datasets.

Integration of large-scale, single-cell datasets is hampered by 

heterogeneity and sparsity of single-cell expression and batch 

effects24. INSCT24, a single-cell integration method designed 

for handling millions of cells, tackles batch effects by learning 

in a supervised manner using a triplet neural network to learn 

batch-aware cell representations by minimizing the distance 

between similar cells and maximizing the distance between 

dissimilar cells. Fugue25 is a self-supervised method capable of 

integrating super large-scale, single-cell transcriptomes from 

diverse sources by incorporating batch effects as a learnable 

parameter. Fugue can integrate all single-cell transcriptomes 

from HCA25, allowing for uncovering subtle variations across 

different biological states and tissue types. To address the ineffi-

ciency of  t- distributed stochastic neighbor embedding (t-SNE) 

and uniform manifold approximation and projection (UMAP) 

in data visualization at the atlas-level scale, Cumulus26 pro-

vides a cloud-based solution for speeding up data visualization 

through training a deep feed-forward network. As described in 

Table 1, these methods come with specific aims to harness vast 

amounts of single-cell transcriptome data.

The concept of large-scale, self-supervised learning has rev-

olutionized natural language understanding and computer 

vision. Large-scale, self-supervised learning involves leverag-

ing deep-learning models pretrained on large-scale general 

datasets and subsequent fine-tuning towards downstream 

tasks22. Representative pretraining models include masked 

and autoregressive language modelling. The advantage of 

these pretraining models lies in a capacity to absorb real-

world insight from extensive unlabelled and high-dimensional 

data. Inspired by the success of large-scale pretraining in nat-

ural language understanding, transformer-based pretraining 

models have been developed for representing large-scale (10 

million) single-cell transcriptomes, as exemplified by iSEEEK, 

Geneformer, and tGPT20-22. The input of these models is the 

sequence of gene symbols that are obtained by ranking the 

level of expression. iSEEEK20 and Geneformer22 use masked 

language modelling to learn cell representations. Specifically, 

15% of genes were randomly masked during the training 

phase and the model was tasked to predict those masked genes 

by taking the unmasked genes in context, thereby enhancing 

the contextual understanding. The contextual relationships 

among genes learned by iSEEEK and Geneformer have proven 

to be useful in characterizing gene–gene and gene-phenotype 

associations. The difference between iSEEEK and Geneformer 

is the length of the input sequence. iSEEEK takes the top 128 

expressed genes as input to avoid noise signals induced by 

low-expressing genes, while Geneformer uses the top 2048 

expressed genes, which includes 93% of expressed genes, to 

avoid missing signals that are buried in low-expressing genes. 

The results showed that iSEEEK is robust with respect to the 

number of top-expressing genes21. tGPT21 was pretrained with 

autoregressive language modelling34. These rank-based meth-

ods are insensitive to batch effects, therefore providing more 

robust non-parametric feature representations for single-cell 

expression21,22. Single-cell transcriptomes are increasing expo-

nentially. Therefore, the development of foundation models 

from these data has the potential to uncover biological princi-

ples governing cell development and transformation.

Prerequisites and challenges of deep-
learning methods

In the realm of analyzing large-scale, single-cell transcrip-

tomic data, leveraging deep-learning methods hold prom-

ise, yet necessitates careful considerations and awareness of 
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prerequisites. These considerations span multiple facets, influ-

encing the efficacy and applicability of deep-learning models 

in deciphering the intricacies of single-cell biology. Rigorous 

data normalization is imperative to ensure that deep-learn-

ing models reliably extract meaningful information from raw 

data. Different deep-learning methods may require specific 

data normalization conditions. For example, the input expres-

sion vectors for iMAP are log-transformed transcripts per mil-

lion (TPM)-like values35 and the tGPT model needs a count 

expression vector as the model input21. Moreover, researchers 

must grapple with strategies to apply suitable methods accord-

ing to the data volume. For smaller datasets, leveraging tech-

niques, such as transfer learning with the pre-trained model, 

are essential to mitigate the challenges posed by a limited sam-

ple size21. For large-scale datasets, advanced architectures, like 

contrastive learning36 and transformers20, may be more suita-

ble for capturing complex patterns. Implementing appropri-

ate strategies aligned with data volume ensures the robustness 

and generalization of the deep-learning models across differ-

ent scales. Moreover, optimizing the model architectures and 

exploring lightweight alternatives become essential to strike 

a balance between computational efficiency and model per-

formance. Techniques, such as model pruning and knowl-

edge distillation, offer avenues to reduce model complexity 

without compromising predictive accuracy. Researchers must 

carefully assess the available computational infrastructure, 

considering factors, such as GPU availability and cloud com-

puting resources, to determine the feasibility of implementing 

deep-learning approaches.

Single-cell data analysis often suffers from several challenges. 

The inherent noise and batch effects are the most significant 

challenges before data integrated analysis. Researchers should 

conduct rigorous batch correction to alleviate the impact of 

technical variations before applying deep learning methods. 

Addressing these challenges is crucial for enhancing the reli-

ability and interpretability of the deep-learning models, par-

ticularly in the context of single-cell biology, in which data 

quality is paramount. In addition, single-cell transcriptomic 

data analysis faces inherent sparsity issues. The inherent spar-

sity arises from the nature of single-cell technologies, in which 

a substantial proportion of genes exhibit negligible levels of 

expression in individual cells, resulting in datasets dominated 

by zero values. This sparsity poses a hurdle for deep-learning 

models, making it arduous to discern meaningful patterns 

amid the noise, thereby impacting model performance and 

generalizability. Moreover, another notable challenge is the 

interpretability of models. Deep-learning models are often 

criticized for being “black boxes,” which makes it difficult to 

understand the biological rationale upon which the predictions 

are based. Balancing model complexity with interpretability 

becomes crucial, necessitating the incorporation of explana-

tion methods. Researchers must explore techniques, such as 

attention mechanisms19, to unravel the features influencing 

model decisions. While attention mechanisms have not been 

extensively explored in single-cell analysis, the application in 

biology is gradually expanding. For instance, CLAM uses gate-

based attention mechanisms to unearth context-independent 

morphologic pathology features in pathologic images37. WIT 

utilizes self-attention mechanisms to learn context-aware path-

ogenic features without any manual annotation38. In the realm 

of single-cell transcriptomics and deep learning integration, 

maintaining data quality and elucidating model outcomes 

remain pivotal. Only through a holistic consideration of noise, 

batch effects, sparsity, and explanations can the true potential 

of deep learning be realized in the context of single-cell biology.

In the dynamic landscape of single-cell analyzes, integrat-

ing multi-omics data, especially genomic and epigenomic 

data with single-cell transcriptomes, holds immense poten-

tial but is challenging. The primary hurdle lies in the inher-

ent heterogeneity across data layers, demanding sophisticated 

computational methods to align disparate characteristics 

while preserving nuanced details. In the realm of multimodal 

integration, diverse omics modalities encounter distinctive 

challenges. For instance, the intrinsic sparsity in single-cell 

scRNA-seq data poses hurdles when integrating analysis. 

Single-cell assay for transposase-accessible chromatin using 

sequencing (scATAC-seq) exhibits sparsity and heterogeneity 

with noticeable diversity observed across different cell pop-

ulations and gene loci. Similarly, single-cell methylation data 

are typically high-dimensional, involving millions of CpG sites 

per cell, rendering data processing and analysis more com-

plex. In addition, the issue of imbalances between different 

modalities, in which some modalities may have fewer samples, 

is also a crucial consideration when integrating multimodal 

data, potentially influencing the integrated outcomes. In the 

realm of multi-omics data, challenges, such as batch effects 

between different omics layers, require specialized normali-

zation techniques. Numerous alternative architectures have 

been suggested, each tailored to specific criteria, such as drop-

out and batch effect robustness, improved interpretability 

through disentanglement of latent factors and imputation of 

missing modalities through cross-modal translation39. Despite 
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these challenges, multi-omics integration offers a compre-

hensive view of cellular processes, capturing the interplay 

between genetic variations, epigenetic modifications, and gene 

expression. For example, GLUE combines scRNA-seq and 

scATAC-seq for large-scale unpaired data analysis, unveiling 

expression quantitative trait loci and cis-regulatory interac-

tions that single-omics approaches cannot explain28. Single-

cell imputation protein embedding neural network (sciPENN) 

integrates cellular indexing of transcriptomes and epitopes by 

sequencing (CITE-seq) and scRNA-seq to reveal cellular het-

erogeneity in gene expression and functionality40. The holis-

tic nature of multi-omics integration enhances biomarker 

discovery precision, identifying robust molecular signatures 

for accurate representation of cellular states. As technologies 

and methodologies advance, addressing these challenges will 

become increasingly feasible, opening new avenues for trans-

formative insight into the complexities of single-cell biology41.

Advancing single-cell biology 
research with deep learning in 
the future

Single-cell sequencing provides an unprecedented opportu-

nity for the systematic investigation of cellular diversity and 

deciphering comprehensive delineation of the dynamics of 

single cells. The rapidly evolving field of deep learning has 

driven artificial intelligence (AI) research for biology, there-

fore addressing the biological challenges with AI.

Applications of AI for characterizing single-cell transcrip-

tomes are still in the early stage. It is crucial to standardize the 

selection of deep-learning methods by taking into account 

statistical assumptions, the trade-off between scalability and 

accuracy, and the suitability of methods with analysis scenar-

ios. Users need to choose the appropriate methods according 

to the characteristics of the data. Some deep-learning meth-

ods have specific statistical assumptions. For example, VAE 

requires an assumption of a Gaussian distribution, which does 

not hold for biased datasets with unbalanced cell types. In 

addition, different methods are suited to different tasks with 

different complexities. scVI performs better with large datasets 

and batch complexity. Seurat and DESC are recommended for 

batch correction of small datasets. Seurat and DESC will be 

valuable for a detailed evaluation of the relationship among 

different deep-learning methods and characteristics of single- 

cell data.

The growing volume of single-cell transcriptome data calls 

for the establishment of reference single-cell atlases across het-

erogeneous tissues from healthy individuals and patients with 

different diseases. Single-cell atlases include samples that span 

locations, laboratories, and conditions, leading to complex, 

nested batch effects in data. Joint analysis of atlas data requires 

reliable data integration. One of the main obstacles in atlas-level, 

single-cell integration is the detection of under- and over-cor-

rection. Under-correction can lead to incorrect biological inter-

pretation because the observed differences between pheno-

types can be due to batch effects. Over-correction can lead to 

the offset of true biological variation, especially when studying 

subtle shifts in the cellular state among different experimen-

tal conditions. It is imperative to establish a robust evaluation 

framework to measure batch effect correction and biological 

variation. This framework should encompass informative eval-

uation indices, as well as datasets with both quantifiable batch 

effects and biological variations in varying intensities.

AI research is undergoing a paradigm shift in computer 

vision and natural language processing. Pre-training methods 

that learn directly from raw text have revolutionized natural lan-

guage processing. The emergence of GPT-4, boasting 1.8 trillion 

parameters and extensive training on 13 trillion tokens, expands 

the application of deep learning in various scenarios. With the 

amount of publicly available single-cell data continuing to 

expand, we will see a further paradigm shift in the integration of 

super large-scale transcriptomes into a fundamental model and 

transfer the knowledge into downstream tasks. Public databases 

host tens-to-hundreds of millions of single-cell transcriptomes, 

providing an ample resource to develop foundational models 

with increasing parameters for more comprehensive and effec-

tive interpretation of biological principles.

Additional data types derived from cells have accumulated 

in addition to transcriptomes. These data include genomic 

and epigenomic data generated by genome and epigenome 

sequencing. The integration of multi-omics data will open new 

avenues for a more comprehensive understanding of cellular 

dynamics across various hierarchies28. The establishment of 

large-scale pre-training frameworks for single-cell multi-omics 

analysis shows promise in revealing accurate regulatory rela-

tionships among different omics41. Large-scale pre-training 

frameworks for single-cell multi-omics is a rapidly improving 

content to explore deep representation learning by training 

multimodal deep neural networks. For example, contrastive 

language-image pre-training (CLIP)42 is pretrained on a sub-

stantial dataset of text and images, enabling CLIP to learn a 
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shared understanding of language and vision for a variety of 

downstream tasks that link multi-omics. Leveraging the latest 

deep-learning multi-omics methods to learn shared feature 

representations of single-cell data holds great potential for a 

better understanding of genome-transcriptome interactions.

The development of single-cell analysis methods should 

not be the end goal but the application of single-cell analysis 

methods to enhance our current understanding of cell dynam-

ics related to phenotypes. Current methods for associating cell 

types and sample conditions primarily focus on observing the 

proportions of different phenotypic samples within specific cell 

clusters. Exploring and characterizing subtle variations in phe-

notypes within identical cell types is imperative43. We believe 

there are still numerous uncharted paths and substantial oppor-

tunities to more deeply examine subcellular states and capture 

cell-to-cell variability of the homogenous cell populations.

Advances in deep-learning methods are poised to yield a 

deeper and better understanding of developmental processes, 

organismal functions, and disease development44. These 

methods will contribute to refining disease stratification, 

devising innovative therapeutic strategies, and advancing pre-

cision medicine.
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