ATM in breast and brain tumors: a comprehensive review ====================================================== * Mehrdad Asghari Estiar * Parvin Mehdipour ## Abstract The *ATM* gene is mutated in the syndrome, ataxia-telangiectasia (AT), which is characterized by predisposition to cancer. Patients with AT have an elevated risk of breast and brain tumors Carrying mutations in *ATM*, patients with AT have an elevated risk of breast and brain tumors. An increased frequency of *ATM* mutations has also been reported in patients with breast and brain tumors; however, the magnitude of this risk remains uncertain. With the exception of a few common mutations, the spectrum of *ATM* alterations is heterogeneous in diverse populations, and appears to be remarkably dependent on the ethnicity of patients. This review aims to provide an easily accessible summary of common variants in different populations which could be useful in *ATM* screening programs. In addition, we have summarized previous research on ATM, including its molecular functions. We attempt to demonstrate the significance of ATM in exploration of breast and brain tumors and its potential as a therapeutic target. * Breast cancer * brain tumor * DNA damage * DNA repair ## Introduction Alterations in the *ATM* gene are the main cause of the rare autosomal recessive disorder, ataxia-telangiectasia (AT). This condition is characterized by neuro-degeneration, cerebellar ataxia, oculomotor apraxia, choreoathetosis, telangiectasias of the conjunctivae, frequent infections, immunodeficiency, radiosensitivity, and a predisposition to cancer, and was described as a specific disease entity in 1957. AT occurs early in childhood, and its frequency varies from 1 in 40, 000 to 300, 000 births in various countries and ethnic groups1,2. To date more than 400 disease-related mutations have been identified in *ATM*, approximately 70% of which result in the production of truncated protein3,4 (http://www.vmresearch.org/atm.htm). The majority of mutations are unique and they are uniformly distributed throughout the open reading frame of the gene, without any hotspots. Despite the 100% penetrance of truncating mutations, the low penetrance of missense mutations often leads to an insignificant phenotype5. The prevalence of *ATM* mutations ranges from 0.5% to 1% in Western populations1,6; however, homozygosity for the same mutation is rare. Maintaining genomic integrity and stability is essential for all types of cells with the critical function of inhibiting tumor development, and ATM is a key factor in these processes. ATM has various functions, including a key role in the recognition and repair of double-strand breaks (DSBs). The response to DNA damage includes recognition of damaged DNA, recruitment of repair proteins, signaling to cell cycle checkpoints, and facilitation of apoptosis via regulation and activation. Since ATM is involved in many of these processes, it could be considered a master regulator of the DNA damage response7-9. In the brain, the processes involved in maintaining genomic stability and integrity are particularly important, since neurons are terminally differentiated and unable to divide. Therefore, they have evolved multiple overlapping mechanisms for DNA damage repair10. Consistent with the significance of DNA repair to the health and survival of brain cells, mutations in DNA repair genes often cause syndromes which include pronounced defects in the central nervous system (CNS)11-13. AT, caused by mutations in the ataxia-telangiectasia gene, is characterized by progressive degeneration of the cerebellar cortex, and sometimes brain tumors14, particularly medulloblastomas and gliomas15-19. Cytogenetic and molecular deletions of chromosome 11q (the *ATM* gene region) in medulloblastomas suggest the presence of one or more tumor suppressor genes in this region, which could have important roles in brain tumors pathogenesis20-23. Therefore, there appear to be two different pathways that contribute to the AT disease process. Radiation exposure is associated with an elevated risk of breast cancer24; therefore, the function of ATM makes it a plausible candidate for a role in breast cancer predisposition. Indeed, an association between AT and breast cancer was first reported by Swift et al.25, before the *ATM* gene was cloned, when they identified an excess of breast cancers in the relatives of individuals with AT. ## ATM structure The *ATM* gene was mapped by genetic linkage analysis to chromosome 11q22–23 in 198826 and was identified by positional cloning in 199527. The gene contains 66 exons, of which 62 encode a 350-kDa protein of 3056 amino acid residues. The *ATM* gene covers 160 kb of genomic DNA, and is transcribed in a broad range of tissues to produce an mRNA of approximately 13 kb with a coding sequence of 9168 bp. Exons 1a or 1b are differentially spliced in alternative transcripts, the initiation codon lies within exon 4, and the final 3.8 kb exon contains approximately 3.6 kb of untranslated sequence at the 3' end28. ATM is a member of the family of phosphatidylinositol-3-kinase (PI3K)-related protein kinases (PIKK), has serine–threonine protein kinase activity, and includes a PI3K-like domain at its C terminus that comprises almost 10% of the protein. Other important functional domains of ATM are the leucine zipper, which has sequence homology to the *Saccharomyces pombe* Rad3 protein, and a proline-rich region29-31. ## ATM function ATM is the major initiator of a signaling cascade that responds to DSBs, and which operates not only in humans, but also other eukaryotes (**Table 1**). Normally, ATM is present in cells in the form of an inactive dimer or multimer complexes. Following DNA damage, ATM undergoes autophosphorylation at S1981 leading to the separation of the inactive complex to form highly active monomers. Subsequently, through activation of signaling pathways, and via phosphorylation of numerous substrates, DNA repair can take place32, during which two central responses to DNA damage, including the activation of cell-cycle checkpoints and the initiation of DNA repair, are facilitated. View this table: [1](http://www.cancerbiomed.org/content/15/3/210/T1) 1 ATM roles in different species ### Cell-cycle checkpoint function ATM links the recognition of DNA damage to the maintenance of genomic integrity and stability by activating checkpoints that lead to a delay in the progress of cells carrying damaged DNA through the cell cycle. The progression of the cell cycle is controlled by cyclin-dependent kinase (CDK) complexes (**Figure 1**). Sequential events in the cell cycle rely on checkpoints to guarantee their step by step progression. Also, if the DNA is damaged, checkpoints arrest the cell cycle by delaying the activity of CDKs. ATM is involved in the regulation of these checkpoints after exposure to ionizing radiation (IR)44-48. ![1](http://www.cancerbiomed.org/https://www.cancerbiomed.org/content/cbm/15/3/210/F1.medium.gif) [1](http://www.cancerbiomed.org/content/15/3/210/F1) 1 ATM plays multiple roles in human cell biology. To be highly active, ATM disunites to monomers; like other PI3Ks for activation it needs a stimulus and leads to phosphorylation of several different substrates. On the other hand, the activity of ATM can be regulated via some of these substrates. Indeed, they provide a platform for ATM. In the area of damaged DNA, ATM takes part in the phosphorylation of the histone variant H2AX, resulting in production of γH2AX. ATM then phosphorylates the adapter protein MDC1. These phosphorylation events form a docking station for many elements involved in the DNA damage repair system, including the RING-finger ubiquitin ligase, RNF8 that binds to phosphorylated MDC1. RNF8 then leads to ubiquitation of γH2AX, resulting in its stabilization. Stabilized γH2AX is the required platform for recruitment of p53 binding protein 1 (53 BP1) and BRCA1. Following their recruitment, 53BP1 and BRCA1 get phosphorylated by ATM, activating DNA repair processes. ATM also interacts with the MRN complex elements, such as MRE11, NBS1 and Rad50, which bind to double strand DNA and act together as a sensor of DNA damage. This interaction leads to an effective response to DNA damage. In the next levels of ATM dependent mechanisms, p53 transactivates its target genes including CDK inhibitor p21, resulting in the inhibition of the Cyclin-CDK complex formation and hindering G1 to S phase transition. mdm2 which negatively regulates p53, is also phosphorylated by ATM, resulting in abrogation of its interacting potential and stabilization of p53. If occurred in S-phase, DNA DSBs triggers CHK2 activation (phosphorylation on threonine 68) by ATM, leading to the phosphorylation of CDC25A, causing its degradation. Genomic stability is also regulated by ATM where it activates Akt, triggering active Skp that in turn regulates the critical replication licensing factor, Cdt. This process is vital for the maintenance of genome by licensing only one replication event in any given region. ![2](http://www.cancerbiomed.org/https://www.cancerbiomed.org/content/cbm/15/3/210/F2.medium.gif) [2](http://www.cancerbiomed.org/content/15/3/210/F2) 2 Mutations of ATM gene in exonic region according to their repetition in different studies in breast cancer patients. Loss of p53 function, which can occur because of mutations in tumor cells, abrogates cell cycle G1/S checkpoints49. DNA damage leads to a rapid induction of p53. The demonstration of delayed and reduced induction of p53 in AT cells following IR exposure was the first link between ATM and p5350,51. In normal cells, the expression level of p53 is maintained by Mdm2, an E3 ubiquitin ligase52,53, which prompts p53 ubiquitination and degradation. In cells harboring DNA damage, ATM phosphorylates p53 and Mdm2 on amino acids Ser15 and Ser395, respectively54,55. This leads to nuclear accumulation of p53 in response to IR, as a result of reduced Mdm2 activity and consequently inhibits shuttling of p53 from the nucleus to the cytoplasm for polyubiquitination and proteasomal degradation. Following DNA damage, in addition to p53 activation and stabilization via modifications56, ATM also inhibits its nuclear export and the ability of Mdm2 to degrade p53, which is an important step in p53 activation54,57,58. Accordingly, the expression of *p53* and *ATM* has been identified as correlated in several cancer cell types59. In brain tumors, *p53* risk and protective haplotypes are associated with glioblastoma and *ATM* in meningioma60; however, Kheirollahi et al.61 reported no correlation of expression between *ATM* and *p53* in grade I and II astrocytomas and meningiomas. Accordingly, Barros et al.62 argued that ATM likely regulates gene expression in an indirect way. It was also suggested by Kheirollahi et al.61, that various complex mechanisms could contribute to this interaction in brain tumors. In breast cancer, however, Angèle et al.63 showed a correlation between the expression of *p53* and *ATM*. It has also been demonstrated that patients with tumors containing concomitant *p53* mutations and low *ATM* expression levels exhibit inferior survival rates, compared with those with wild-type *p53* and high *ATM* expression levels64. Concannon et al.65 suggested that a number of ATM alleles exhibit anti-neoplastic effects, which might be caused by changes in the activity of ATM as a DNA damage initiator or a p53 regulator in breast tumors. There are two pathways that enforce the G1-S checkpoint; the main and delayed response is p53-dependent. Activation, accumulation, and stabilization of p53 leads to transcriptional regulation of a set of genes associated with the cell-cycle. Among those is the CDK inhibitor, p21, which controls the binding of CDK2 to Cyclin D. Binding and activation of CDK2/Cyclin D eventually results in G1/S arrest, a process that requires inactivation of Rb, following progression from G1 to S-phase66 (**Figure 1**). A study investigating astrocytoma and meningioma brain tumors, revealed that associations between *ATM*, *Cyclin D2*, and *Rb* expression are disordered in higher grade tumors, while in lower grade tumors, different patterns of correlation were observed61. In lower grade meningiomas and astrocytomas, the expression levels of *CCND2* (*Cyclin D2*), *P53*, *Rb1*, and *ATM* were significantly positively correlated. *ATM* has been identified as expressed at higher levels in high grade brain tumors, possibly because it is up-regulated in response to DNA damage in higher grade malignancies. The correlation between expression of genes has been demonstrated in various different grades of tumor, indicating a non-specific pattern, even for genes that interact directly61. In meningioma tumor cells, ATM and p53 protein levels were found to be low and very low, respectively. In contrast, astrocytoma tumors present a mixture of low and high ATM and p53 protein levels. The existence of tumor cells with high ATM and p53 expression levels is considered a reliable indirect sign of benign status in meningiomas. These observations are comparable with the high expression levels of p53 and ATM proteins in healthy individuals. Interestingly, low levels of ATM protein expression, together with clones of cells with low levels of Rb protein, indicate a harmonic expression pattern in astrocytoma tumors67. ATM also prevents entry to S-phase in response to DNA damage, via a second, p53-independent, pathway. CHK2 is a key target of ATM in this pathway, and is activated in response to DNA damage through phosphorylation on various sites, including the Thr68 regulatory residue68,69. Activation of CHK2 results in phosphorylation of its target, CDC25A, stimulating its degradation. Reduction of CDC25A blocks entry to S-phase, as it prevents dephosphorylation and activation of CDK270. Mehdipour et al.71 showed that CDC25A is up-regulated in breast tumors and associated with poor survival. These authors suggested that CDC25A is a pivotal prognostic cell cycle marker that could be used for diagnosis of high risk breast cancer. High expression levels of *CDC25A* have also been observed in glioma brain tumors72. As mentioned above, CDC25A phosphorylation by ATM and CHK2 also controls the intra-S phase checkpoint. In addition, in response to DNA damage, ATM is involved in phosphorylation of multiple factors, providing sufficient time for cells to repair DNA lesions during the intra-S phase checkpoint. In this context, BRCA1, FANCD2, NBS1, and SMC1 are phosphorylated by ATM on residues Ser-1387, -222, -343, and -957 (or -966), respectively73. The process that prevents cells containing damaged DNA from entering mitosis is the G2-M checkpoint, which is regulated via several parallel mechanisms. Phosphorylation of BRCA1 on Ser1423 by ATM, inhibits the formation of the CDC2/Cyclin B complex74. In addition, BRCA1 catalyzes CtIP ubiquitination, and its subsequent interaction with chromatin leads to G2-M checkpoint control75. P53 dependent G2 arrest, CDC25C phosphorylation via ATM, and its subsequent events, are other key mechanisms that are induced in response to DNA damage during the G2-M checkpoint73. ### DNA repair function As one of the first lines of protection following DNA damage, ATM is rapidly recruited to sites of DSBs (**Figure 1**), accompanied by the MRN complex (MRE11, NBS1, Rad50). The latter acts as a sensor of damaged DNA, and ATM is not required for its localization76. In contrast, the MRN complex binds to double stranded DNA and is necessary for the response to DNA damage, which depends on the complete activation of the ATM77,78, providing a platform and acting as substrate for ATM79,80. The endo- and exonuclease activities of ATM are important for stimulation of ATM by the MRN complex81. MRE11 leads to production of small DNA fragments which can stimulate ATM activation at the site of DNA DSBs82; nevertheless, Lee et al.83 noted that the nuclease activity of MRE11 in the MRN complex is not crucial for ATM activation. In addition, ATM directly interacts with the MRN complex through the C-terminus of NBS1 (also known NBN)84. All these molecular interactions at the site of DNA DSBs result in an effective DNA damage response that can eventually lead to DNA repair. Awasthi et al.81 proposed that the activation of ATM may be associated with its dephosphorylation. Upon its recruitment, ATM induces the phosphorylation of Ser139 of H2AX, resulting in production of γH2AX85, which in turn provides a platform for binding of the adapter protein, MDC1, and its phosphorylation by ATM86,87. Although dispensable for the initial recruitment of ATM to the site of DNA DSBs, MDC1 is necessary for its retention. Formation of phosphorylated γH2AX-MDC1 complexes at the site of DSBs provides a docking platform for proteins involved in DNA repair and related signaling pathways, including the RING-finger ubiquitin ligases, RNF168 and RNF888-91. RNF8 recruits p53 binding protein 1 (53BP1) and BRCA1 as a result of ubiquitination of γH2AX, resulting in its stabilization. Moreover, 53BP1 and BRCA1 are phosphorylated by ATM92. Thus, phosphorylation events mediated by ATM are essential for the repair of DNA DSBs (**Figure 1**). ### Other roles of ATM Another important role of ATM is its involvement in the cellular response to oxidation state. Following oxidative stress, changes to the integrity of several intermolecular disulfide bonds lead to the induction of ATM. At DNA DSBs, ATM activation is through phosphorylation of Ser1981, which results in dimer dissociation. In contrast, under oxidative conditions, disulfide bonds between the dimer subunits form covalent linkages, resulting in activation of its kinase activity; this function is independent of Ser1981 phosphorylation93,94. ATM also prevents re-replication by regulation of Ctd1 stability, and acts as a guardian of genomic integrity and stability during unperturbed cell-cycle progression. Interestingly, depletion of ATM alters the level of Cdt1, which is a critical replication licensing factor (along with p27 in some cells), without changing the expression of Cyclin D1 or p21, factors regulated by Skp2. This results in strict regulation of Cdt1, ensuring that only one replication program occurs. Of several already unanswered questions, “how does ATM regulate Akt activation?” is notable, as it could hold the key to understanding ATM regulated signaling pathways involved in cell growth and inhibition of apoptosis95,96 (**Figure 1**). ## ATM variants in breast cancer ### Northern Europe The most frequent variants of the *ATM* gene in patients from northern Europe (Finland, Denmark, and the Netherlands) include 2572T>C, 3161C>G, 5558A>T, 2119T>C, 4258C>T, and 5557G>A. The 2572T>C variant, is a missense variant causing Phe858Leu amino acid change in exon 19; another variant at this site, 2572insT, was reported in the Netherlands. Two of these variants, 3161C>G (Pro1054Arg) and 5558A>T (p.Asp1853Val), encode amino acid substitutions predicted to have deleterious effects on protein structure. Gutierrez-Enriquez et al.107 showed that lymphoblastoid cell lines expressing the *ATM* variant, 3161C>G, exhibited chromosomal radiosensitivity*in vitro*, possible due to a dominant-negative effect on ATM function170. The alterations, 2119T>C and 4258C>T, are missense variants in exons 15 and 31, respectively, encoding Ser707Pro and Leu1420Phe protein changes. Heikkinen et al.97 proposed that the 5557G>A*ATM* variant modifies cancer risk when present in cis with the IVS38-8T>C mutation, which is associated with bilateral breast cancer in patients of Finnish origin. They also suggested that such composite alleles lead to low*ATM* expression levels that may influence mis-splicing of exon 39 (**Table 2**). View this table: [2](http://www.cancerbiomed.org/content/15/3/210/T2) 2 ATM variants have been reported in the breast cancer patients from northern Europe ### Southern, central, and western Europe The most frequent variants of the *ATM* gene in patients from southern, central and western Europe (Switzerland, Britain, Germany, France, and Spain) are 2572T>C and 3161C>G. The 3161C>G variant was not reported in the Polish population, and another frequent variant, 2572T>C, did not vary significantly between cases and controls in the Polish study115. In addition, the 2572T>C variant was not reported in Italian population studies (**Table 3**) . View this table: [3](http://www.cancerbiomed.org/content/15/3/210/T3) 3 ATM variants have been reported in the breast cancer patients from southern, central and western Europe ### Eastern Europe The most important and frequent variant of the *ATM* gene in eastern Europe is the nonsense mutation, 5932G>T, which leads to inclusion of a termination of translation at codon at position 1978. It has been reported in the Czech Republic, Austria, Belarus, Ukraine, and Russia. Interestingly, it has rarely been reported in other European countries, other than Poland. Thus, it appears that this variant may have arisen exclusively in eastern Europe. Bogdanova and colleagues, reported a five-fold higher frequency of this mutation in breast cancer patients compared with controls, indicating a role in predisposition to breast cancer susceptibility for the E1978X amino acid change encoded by this allele. This mutation appears to be remarkably frequent in patients from eastern European countries, including Russia, Belarus, and the Ukraine, whereas its incidence is somewhat lower in Poland114 (**Table 4**). View this table: [4](http://www.cancerbiomed.org/content/15/3/210/T4) 4 ATM variants have been reported in the breast cancer patients from eastern Europe ### America The most frequent variants of the *ATM* gene in the American breast cancer patients, including 5558A>T (D1853V) and 5557G>A (D1853N), which have been reported in all different regions and ethnicities in America; although, 5558A>T was not reported in Japanese and Mexican Americans. Bretsky et al.121 noted that 5557G>A is the most important polymorphism, while other missense variants are rare, and do not appear to be overrepresented among breast cancer patients compared with controls in Americans (**Table 5**). View this table: [5](http://www.cancerbiomed.org/content/15/3/210/T5) 5 ATM variants have been reported in the breast cancer patients in different regions and ethnic groups of America and Canada ### Australia The most important missense variant of the *ATM* gene in Australian breast cancer patients is 7271T>G. This is a missense variant causes a valine to glycine substitution at position 2424 of the ATM protein (p.Val2424Gly), and has no influence on any recognized functional domain, suggesting that it is deleterious. This variant has also been reported in the USA, Canada and Britain, which are countries with high immigrant populations. Goldgar and his colleagues stated that women with the*ATM* 7271T>G variant are at high risk and that screening for this variant in cancer-prone families, even those lacking changes in*BRCA1* or *BRCA2*, is essential for management and genetic counselling130. Another prevalent variant in Australian breast cancer patients is the 3802delG truncating mutation in exon 28. IVS10-6T>G is a further important variant, which has been reported in all regions of the world. This variant leads to incorrect splicing of exon 11, producing ATM mRNA and protein molecules of less than 10% of the full-length versions144. Although multiple studies suggest that *ATM* IVS10-6T>G contributes to an elevated risk of breast cancer105,131, a large meta-analysis revealed it is not correlated with increased risk of breast cancer in the overall study population145. The role of the IVS10-6T>G mutation in breast cancer development is suggested to both be determined by its functional consequences and mediated by family history and BRCA1 and BRCA2 mutation status101,119. ### Asia Mehdipour and colleagues141 proposed that the polymorphism 5557G>A (located in exon 39 of*ATM*) could be considered a predisposing factor for the development of familial breast cancer. In this study, Iranian women with breast cancers were divided into two subgroups. The first group were selected at random and the second group had a positive family history; both were compared with a group of healthy controls. The study revealed a carrier frequency of 31% in the disease group, compared with 18.6% in controls. In the randomly selected group, the carrier frequency was 12.5%, whereas the rate was 26.9% in subjects with a family history of breast cancer141. To address the clinical significance of this polymorphism, a meta-analysis study by Gao and colleagues146 concluded that there was no association between the 5557G>A polymorphism and disease. In contrast, Tapia and colleagues126 found a clear positive association between this polymorphism and a high risk of bilateral breast cancer development. They analyzed the frequency of 5557G>A and the intronic variant, IVS24-9delT, individually or in combination, and found a frequency of 20.3% heterozygosity among patients and 7.5% in controls, while only 1% homozygosity was detected in both groups. Furthermore, this variant was described in European countries by Angéle and colleagues110. The authors found that homozygotes were more frequent among patients with breast cancer who had received radiotherapy. This finding led to the proposal of the association of this variant with elevated radiosensitivity in breast tissue, and the suggestion that this alteration is a predisposing factor for reaction effects occurring after radiotherapy110. In another study, González-Hormazábal and colleagues125 found three *ATM* polymorphism, IVS24-9delT, IVS38-8T>C, and 5557G>A (the latter more common, at 20.6%), among Chilean patients with familial breast cancer, who were negative for mutations in BRCA1/2. They suggest that these three alterations, either alone or in combination, together with environmental factors, could increase the risk of breast cancer, as a result of raised chance of genetic instability or failure of the DNA damage response. Youlden et al.147 reported variable mortality rates among different regions, with huge increases in some Asian countries compared with low rates in Australia. Although all breast cancer patients with *ATM* mutations, who had inferior survival rates and died during the follow-up period, carried the 5557G>A variant, this was not a statistically significant finding148 (**Table 6**). View this table: [6](http://www.cancerbiomed.org/content/15/3/210/T6) 6 ATM variants have been reported in the breast cancer patients in Asia, Australia and New Zealand ## ATM variants in brain tumors To date, 739 mutations have been identified in the *ATM* gene (HGMD 2015). Patients with AT and CNS involvement and patients with CNS tumors can have *ATM* gene disruption. In response to DNA damage, requirement for special mechanism in terminally differentiated cells and also localization of ATM at a key biochemical node10 indicate strong evidence of a link between *ATM* and CNS; however, adequate studies are lacking. To date, the evidence for the influence of specific *ATM* mutations and polymorphisms in different types of brain tumor is limited (**Table 7, Figure 3**). The first study of the association between *ATM* variants and brain tumors was performed by Liberzon and colleagues14, who screened 13 medulloblastomas and found that the only altered *ATM* sequences were the known polymorphisms, F858L and D1853N, which were present in five patients (38%). The reported frequency of the D1853N polymorphism was consistent with that in a previously published study of patients with medulloblastoma149. Moreover, D1853N has been reported in the majority of studies65, 109, 127, 150, 151, and is considered the most important fundamental alteration identified by genotyping of the *ATM* gene in patients with brain tumors152. ![3](http://www.cancerbiomed.org/https://www.cancerbiomed.org/content/cbm/15/3/210/F3.medium.gif) [3](http://www.cancerbiomed.org/content/15/3/210/F3) 3 ATM gene variants in brain tumors. In glioma, four variants have been reported, with 4578C>T the only exonic polymorphism identified in a patient population from the north of the UK153. This variant was also detected in patients with breast cancer from Finland, Denmark, Germany, France, Spain, Poland, and the USA, and at the amino acid level encodes Pro1526Pro (exon 30). Zhao et al.154 identified a novel polymorphism in the *ATM* promoter region in gliomas. This variant, 111G>A, is located in the non-coding region of the*ATM* gene and has no direct influence on the amino acid sequence of the ATM protein; however, it may effect splicing, modification, or RNA stability, and thereby the mode of expression of the ATM protein155. Bioinformatics analysis to explore the potential mechanism of *ATM* mRNA expression regulation by this polymorphism suggested that, *ATM* sequences containing the SNP, rs189037, were transcriptionally repressed by AP-2a156. To date, the ATM protein kinase has been referred to as a DNA damage sensor and a therapeutic target in tumors157. View this table: [7](http://www.cancerbiomed.org/content/15/3/210/T7) 7 ATM variants have been reported in different types of brain tumors ## Breast to brain metastases Brain metastases are the most common form of intracranial spread of tumors, accounting for 15%–40% of patients with metastatic conditions160-162, whereas 42% of metastatic breast tumors are solitary163. Overall, breast and lung cancers are the most likely to progress to brain metastases164. Patients with breast cancer are remarkably likely to develop brain metastases, leading to a disease state with undesirable consequences for quality of life and more complicated responses to therapy. The incidence of brain metastases varies between 140, 000 and 170, 000 cases per year, and in recent years has risen, seemingly because of the prolonged survival of patients with primary tumors who have undergone aggressive treatment162,165. Gachechiladze et al.166 reported a significant correlation between shorter survival and phosphorylation of BRCA1 in patients with brain metastases of lung cancer. The role of ATM in BRCA1 phosphorylation and the interaction of these proteins is established166,167. In addition, variants of ATM and BRCA1 have functional effects in breast cancer141,168. Thus, ATM may have a crucial role in tumors involving breast-brain metastases. Studies investigating *ATM* variants in this type of breast tumor will shed new light on this field; however, no such study has been published to date. Recently, the D1853N mutation in *ATM* was reported in tumors with ovarian to brain metastases, and *ATM* and *BRCA1* were found to be the most commonly altered genes169. Mehdipour et al.141 explored the role of D1853N in disease susceptibility among breast cancer patients and healthy individuals, and found this variant is a risk factor for metastatic progression. Furthermore, metastatic progression has been classified as a stepwise molecular alteration process of cancer development which requires three hits, D1853N, IVS38-63T>A, and IVS38-30A>G, occurring sequentially in astrocytes152 (**Figure 4**). In addition, Mehdipour et al.67 found a triangular correlation between methylation of the *ATM* promoter and protein expression of *ATM* with the D1853N variant. Evaluation of the D1853N variant alongside other alterations in patients with breast cancer, particularly those with breast to brain metastases, could lead to development of appropriate clinical management approaches. ![4](http://www.cancerbiomed.org/https://www.cancerbiomed.org/content/cbm/15/3/210/F4.medium.gif) [4](http://www.cancerbiomed.org/content/15/3/210/F4) 4 Three hit hypothesis. Two novel heterozygously intronic alteration, i.e., IVS 38- 63 T>A and IVS 38-30 A> was found in proband located within 3 regions of splicing site. Two non-inherited events including IVS38-63T>A and IVS38-30A>G, resulting from two separate courses of evolution in proband occurred on the same chromosome which was different from the inherited D1853N polymorphism (data is adopted from Mehdipour, et al. 2008). Heikkinen and colleagues97 proposed a cancer risk-modifying consequence of the IVS38-8T>C alteration occurring*in cis*, as it was reported as associated with bilateral breast cancer in patients of Finnish origin. They suggested that the function of such a composite allele leads to low *ATM* expression levels, that may be related to the mis-splicing of a region of exon 39. These data emphasize the importance of evaluation of ATM expression, in addition to exploration of its variants. The only study to do this was that of Salhia et al.170 who demonstrated that *ATM* gene expression was commonly down-regulated in patients with breast cancer and brain metastases. Combined functional assays, including copy number variation and gene expression analyses, demonstrated the down-regulation of *ATM*, revealed cell cycle and G2-M pathway enrichment, and have potential to lead to innovative therapeutic strategies. These findings are of particular importance, since they suggest rare therapeutic options for tumors involving breast to brain metastases. ## Therapeutic opportunities Given its broad range of functions, in processes from cell cycle regulation to DNA repair, ATM represents a therapeutic target molecule in tumors of the brain and breast. The discovery and introduction of anticancer drugs targeting molecules involved in the cell-cycle and checkpoint regulation, such as cell-cycle or checkpoint inhibitors171, can also influence ATM indirectly. The majority of cancer therapy studies related to ATM have focused on its significance in radiotherapy172-175. Molecular mechanisms that cause resistance to radiotherapy in glioma cells have been linked to the expression of ATM, in cooperation with other pro-survival networks176. A key mechanism leading to inactivation of tumor suppressor genes is methylation of their promoters. The methylation pattern of the *ATM* promoter has been investigated in a few studies of different types of brain tumors177,178. For example, Mehdipour et al.67 found that more than 73% of brain tumors exhibit methylation of the *ATM* promoter. A strong correlation between *ATM* promoter methylation and its protein expression has also been established. In another study, in which three glioblastoma cell lines (U87, T98G, and U118) were analyzed, methylation of the *ATM* promoter was only found in the T98G cell line178; however, despite its normal methylation status, the level of ATM protein was decreased in U87 and U118 glioma cells, which also exhibited elevated sensitivity to radiation. The use of siRNA to silence ATM expression can increase tumor cell radiosensitivity, as reported recently175. In brain metastases from the majority of epithelial cancers, the blood brain barrier (BBB) limits the use of chemotherapy as the first-line treatment option, with radiotherapy considered most effective. However, resistance to radiotherapy leads to disease recurrence and therapeutic failure. Yang et al.179 reported increased radiosensitivity in response to treatment with the CHK1 inhibitor, AZD7762, in lung cancer cell lines and a xenograft model. In lung cancer cell lines, the mechanism underlying this phenomenon was identified as the interaction of AZD7762 with ATR/ATM-mediated CHK1 phosphorylation, stabilization of CDC25A, and suppression of cyclin expression. In addition, in a lung cancer xenograft model of brain metastases, the median survival period was enhanced by AZD7762179. Tumors with DNA repair pathway deficiency are sensitized to platinum drugs that induce such double strand breaks180. Hence, breast cancer patients with *BRCA1* mutations exhibit increased responses to treatment with cisplatin181. Tumors with *ATM* mutations are also highly sensitive and responsive to platinum chemotherapy182. Recently, Fann et al.183 evaluated the small molecule, NSC745887, in glioblastoma cells and found that it caused high expression of γH2AX, leading to DNA fragmentation, enhanced G2-M arrest, and apoptosis via induction of DNA damage responses. ## Future perspective Adequately informative gene expression/polymorphism profiles of human brain tumors are not available, because of disease heterogeneity and lack of comprehensive studies. Thus, comprehensive understanding of tumorigenic processes requires additional complementary investigations and pedigree-based analyses. Hence, more studies are required to fully address the etiology of brain tumors and differences in ATM variations, particularly in brain metastases. Nevertheless, monitoring of ATM alterations in brain tumors is a rather limited approach that has been restricted to a few types of brain tumors. Some reports of evaluation of *ATM* gene expression are available in different tumors, particularly brain tumors. Neurons are unable to enter the cell cycle; however, cancerous brain cells lose this feature and reactivate cycling, indicating that their templates of activation or inactivation differ fundamentally to normal ones. Accordingly, there does not appear to be a specific template for the correlation of the expression pattern of key factors in the DNA repair process, even among genes known to closely interact, including *p53*, *ATM*, *Rb* and *Cyclin D*. Studying the mRNA expression level of the above-mentioned genes in human brain tumors is necessary. To clarify any relationship between ATM functions and its variants, complementary research studies are required. The newly discovered function of ATM in response to oxidative conditions blurs any clear distinction between the DNA repair process and other cellular functions of ATM. According to available data on breast tumors, it could be concluded that *ATM* gene status, is highly variable depending on the available data on the patient’s population origin and pedigree. In addition, a primary obstacle to effective therapy for brain tumors, specifically higher grade tumors, is rooted in resistance to radiotherapy. The remarkable resistance of cells lacking ATM to radiation is a key finding worthy of consideration. What are the expectations of the clinicians and scientists fighting to eradicate breast cancer and brain tumors? Comprehensive insights into the molecular involvement of the *ATM* gene have the potential to facilitate more reliable clinical management, including improvement of patient survival. ## Footnotes * **Conflict of interest statement** No potential conflicts of interest are disclosed. * Received January 31, 2018. * Accepted April 16, 2018. * Copyright: © 2018, Cancer Biology & Medicine [https://creativecommons.org/licenses/by/4.0/](https://creativecommons.org/licenses/by/4.0/) This is an open access article distributed under the terms of the [Creative Commons Attribution License (CC BY) 4.0](https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. ## References 1. 1. Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT. The incidence and gene frequency o f ataxia-telangiectasia in the United States. Am J Hum Genet. 1986; 39: 573–83. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=3788973&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=A1986F303200003&link_type=ISI) 2. 2. Lavin MF, Shiloh Y. The genetic defect in ataxia-telangiectasia. Ann Rev Immunol. 1997; 15: 177–202. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1146/annurev.immunol.15.1.177&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=9143686&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=A1997WT66900008&link_type=ISI) 3. 3. Concannon P, Gatti RA. Diversity of *ATM* gene mutations detected in patients with ataxia-telangiectasia. Hum Mutat. 1997; 10: 100–7. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1002/(SICI)1098-1004(1997)10:2<100::AID-HUMU2>3.0.CO;2-O&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=9259193&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=A1997XN17700002&link_type=ISI) 4. 4. Stankovic T, Kidd AMJ, Sutcliffe A, McGuire GM, Robinson P, Weber P, et al. *ATM* mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant *ATM* and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet. 1998; 62: 334–45. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1086/301706&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=9463314&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000072416000017&link_type=ISI) 5. 5. Gatti RA, Tward A, Concannon P. Cancer risk in *ATM* heterozygotes: a model of phenotypic and mechanistic differences between missense and truncating mutations. Mol Genet Metab. 1999; 68: 419–23. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1006/mgme.1999.2942&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=10607471&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000084721800001&link_type=ISI) 6. 6. Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M, et al. *ATM* mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006; 38: 873–5. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/ng1837&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=16832357&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000239325700014&link_type=ISI) 7. 7. Lo Muzio L, Sartini D, Santarelli A, Rocchetti R, Morganti S, Pozzi V, et al. Expression and prognostic significance of apoptotic genes in oral squamous cell carcinoma. Mol Carcinog. 2014; 53: 264–71. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1002/mc.21960&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=23001827&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 8. 8. Pandita TK. 14th international workshop on ataxia-telangiectasia ATW2012. DNA Repair. 2012; 11: 853–6. 9. 9. Mehdipour P. Novel hypothesis on telomere length: heterogenic targets as genomic/somatic diverse value in breast cancer and brain tumor // Mehdipour P. Telomere Territory and Cancer. Dordrecht: Springer. 2013:99-141. 10. 10. Herrup K, Li JL, Chen JM. The role of ATM and DNA damage in neurons: upstream and downstream connections. DNA Repair. 2013; 12: 600–4. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.dnarep.2013.04.012&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=23680599&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 11. 11. Adelman CA, De S, Petrini JHJ. Rad50 is dispensable for the maintenance and viability of postmitotic tissues. Mol Cell Biol. 2009; 29: 483–92. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoibWNiIjtzOjU6InJlc2lkIjtzOjg6IjI5LzIvNDgzIjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 12. 12. Baranes K, Raz-Prag D, Nitzan A, Galron R, Ashery-Padan R, Rotenstreich Y, et al. Conditional inactivation of the *NBS1* gene in the mouse central nervous system leads to neurodegeneration and disorganization of the visual system. Exp Neurol. 2009; 218: 24–32. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=19345213&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 13. 13. Jacobsen E, Beach T, Shen Y, Li RN, Chang Y. Deficiency of the Mre11 DNA repair complex in Alzheimer's disease brains. Mol Brain Res. 2004; 128: 1–7. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.molbrainres.2004.05.023&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=15337312&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 14. 14. Liberzon E, Avigad S, Cohen IJ, Yaniv I, Michovitz S, Zaizov R. *ATM* gene mutations are not involved in medulloblastoma in children. Cancer Genet Cytogenet. 2003; 146: 167–9. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=14553952&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 15. 15. Gatti RA, Boder E, Vinters HV, Sparkes RS, Norman A, Lange K. Ataxia-telangiectasia: an interdisciplinary approach to pathogenesis. Medicine. 1991; 70: 99–117. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=2005780&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 16. 16. Shuster J, Hart Z, Stimson CW, Poulik MD. Ataxia telangiectasia with cerebellar tumor. Pediatrics. 1966; 37: 776–86. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6InBlZGlhdHJpY3MiO3M6NToicmVzaWQiO3M6ODoiMzcvNS83NzYiO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 17. 17. Hart RM, Kimler BF, Evans RG, Park CH. Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia. Int J Radiat Oncol Biol Phys. 1987; 13: 1237–40. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=3610711&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=A1987J468500017&link_type=ISI) 18. 18. Groot-Loonen J, Slater R, Taminiau J, Voûte P. Three consecutive primary malignancies in one patient during childhood. Pediatr Hematol Oncol. 1988; 5: 287–92. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.3109/08880018809037368&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=3152974&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 19. 19. Miyagi K, Mukawa J, Kinjo N, Horikawa K, Mekaru S, Nakasone S, et al. Astrocytoma linked to familial ataxia-telangiectasia. Acta Neurochir. 1995; 135: 87–92. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/BF02307420&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=8748798&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 20. 20. Reardon DA, Michalkiewicz E, Boyett JM, Sublett JE, Entrekin RE, Ragsdale ST, et al. Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Cancer Res. 1997; 57: 4042–7. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI1Ny8xOC80MDQyIjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 21. 21. Scheurlen WG, Schwabe GC, Joos S, Mollenhauer J, Sörensen N, Kühl J. Molecular analysis of childhood primitive neuroectodermal tumors defines markers associated with poor outcome. J Clin Oncol. 1998; 16: 2478–85. [Abstract](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNvIjtzOjU6InJlc2lkIjtzOjk6IjE2LzcvMjQ3OCI7czo0OiJhdG9tIjtzOjE4OiIvY2JtLzE1LzMvMjEwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 22. 22. Yin XL, Pang JC, Liu YH, Chong EY, Cheng Y, Poon WS, et al. Analysis of loss of heterozygosity on chromosomes 10q, 11, and 16 in medulloblastomas. J Neurosurg. 2001; 94: 799–805. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=11354413&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000168524600016&link_type=ISI) 23. 23. Michiels EMC, Weiss MM, Hoovers JMN, Baak JPA, Voûte PA, Baas F, et al. Genetic alterations in childhood medulloblastoma analyzed by comparative genomic hybridization. J Pediatr Hematol Oncol. 2002; 24: 205–10. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1097/00043426-200203000-00009&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=11990307&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000174910300008&link_type=ISI) 24. 24. John EM, Kelsey JL. Radiation and other environmental exposures and breast cancer. Epidemiol Rev. 1993; 15: 157–62. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=8405198&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=A1993LV35100014&link_type=ISI) 25. 25. Swift M, Reitnauer PJ, Morrell D, Chase CL. Breast and other cancers in families with ataxia-telangiectasia. N Eng J Med. 1987; 316: 1289–94. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1056/NEJM198705213162101&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=3574400&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=A1987H317100001&link_type=ISI) 26. 26. Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22-23. Nature. 1988; 336: 577–80. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/336577a0&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=3200306&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=A1988R248000072&link_type=ISI) 27. 27. Savitsky K, Sfez S, Tagle DA, Ziv Y, Sartiel A, Collins FS, et al. The complete sequence of the coding region of the *ATM* gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet. 1995; 4: 2025–32. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1093/hmg/4.11.2025&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=8589678&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=A1995TD65900004&link_type=ISI) 28. 28. Uziel T, Savitsky K, Platzer M, Ziv Y, Helbitz T, Nehls M, et al. Genomic organization of the *ATM* gene. Genomics. 1996; 33: 317–20. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1006/geno.1996.0201&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=8660985&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=A1996UH00600024&link_type=ISI) 29. 29. Abraham RT. PI 3-kinase related kinases:‘big’ players in stress-induced signaling pathways. DNA Repair. 2004; 3: 883–7. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.dnarep.2004.04.002&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=15279773&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 30. 30. Shafman T, Khanna KK, Kedar P, Spring K, Kozlov S, Yen T, et al. Interaction between *ATM* protein and c-Abl in response to DNA damage. Nature. 1997; 387: 520–3. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/387520a0&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=9168117&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=A1997XB47900053&link_type=ISI) 31. 31. Khanna KK. Cancer risk and the *ATM* gene: a continuing debate. J Natl Cancer Inst. 2000; 92: 795–802. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1093/jnci/92.10.795&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=10814674&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000086985300009&link_type=ISI) 32. 32. Bakkenist CJ, Kastan MB. DNA damage activates *ATM* through intermolecular autophosphorylation and dimer dissociation. Nature. 2003; 421: 499–506. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/nature01368&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=12556884&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000180670600036&link_type=ISI) 33. 33. Yoshiyama KO, Kobayashi J, Ogita N, Ueda M, Kimura S, Maki H, et al. *ATM*-mediated phosphorylation of SOG1 is essential for the DNA damage response in Arabidopsis. EMBO Rep. 2013; 14: 817–22. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NToiZW1ib3IiO3M6NToicmVzaWQiO3M6ODoiMTQvOS84MTciO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 34. 34. Piening BD, Huang DQ, Paulovich AG. Novel connections between DNA replication, telomere homeostasis, and the DNA damage response revealed by a genome-wide screen for *TEL1*/*ATM* interactions in *Saccharomyces cerevisiae*. Genetics. 2013; 193: 1117–33. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiZ2VuZXRpY3MiO3M6NToicmVzaWQiO3M6MTA6IjE5My80LzExMTciO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 35. 35. Sabourin M, Zakian VA. ATM-like kinases and regulation of telomerase: lessons from yeast and mammals. Trends Cell Biol. 2008; 18: 337–46. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.tcb.2008.04.004&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18502129&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000257912100006&link_type=ISI) 36. 36. Jones MR, Huang JC, Chua SY, Baillie DL, Rose AM. The *atm-1* gene is required for genome stability in *Caenorhabditis elegans*. Mol Genet Genomics. 2012; 287: 325–35. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/s00438-012-0681-0&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=22350747&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 37. 37. Malavazi I, Semighini CP, Von Zeska Kress MR, Harris SD, Goldman GH. Regulation of hyphal morphogenesis and the DNA damage response by the *Aspergillus nidulans* ATM homolog *AtmA*. Genetics. 2006; 173: 99–109. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiZ2VuZXRpY3MiO3M6NToicmVzaWQiO3M6ODoiMTczLzEvOTkiO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 38. 38. Garg R, Geng CD, Miller JL, Callens S, Tang X, Appel B, et al. Molecular cloning and characterization of the catalytic domain of zebrafish homologue of the ataxia-telangiectasia mutated Gene11Note: sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession no. AJ605775. Mol Cancer Res. 2004; 2: 348–53. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=15235110&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 39. 39. Song YH, Mirey G, Betson M, Haber DA, Settleman J. The *Drosophila* ATM ortholog, dATM, mediates the response to ionizing radiation and to spontaneous DNA damage during development. Curr Biol. 2004; 14: 1354–9. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.cub.2004.06.064&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=15296752&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000223306200027&link_type=ISI) 40. 40. Huber A, Bai P, De Murcia JM, De Murcia G. PARP-1, PARP-2 and *ATM* in the DNA damage response: functional synergy in mouse development. DNA Repair. 2004; 3: 1103–8. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.dnarep.2004.06.002&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=15279798&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 41. 41. Dar I, Yosha G, Elfassy R, Galron R, Wang ZQ, Shiloh Y, et al. Investigation of the functional link between *ATM* and *NBS1* in the DNA damage response in the mouse cerebellum. J Biol Chem. 2011; 286: 15361–76. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyODYvMTcvMTUzNjEiO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 42. 42. Yamamoto K, Wang YY, Jiang WX, Liu XY, Dubois RL, Lin CS, et al. Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice. J Cell Biol. 2012; 198: 305–13. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNiIjtzOjU6InJlc2lkIjtzOjk6IjE5OC8zLzMwNSI7czo0OiJhdG9tIjtzOjE4OiIvY2JtLzE1LzMvMjEwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 43. 43. Zou J, Qiao XM, Ye HP, Yang YQ, Zheng XL, Zhao HY, et al. Antisense inhibition of ATM gene enhances the radiosensitivity of head and neck squamous cell carcinoma in mice. J Exp Clin Cancer Res. 2008; 27: 56. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18950535&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 44. 44. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001; 27: 247–54. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/85798&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=11242102&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000167304200012&link_type=ISI) 45. 45. Kastan MB, Lim DS, Kim ST, Yang DQ. ATM&A key determinant of multiple cellular responses to irradiation. Acta Oncol. 2001; 40: 686–8. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1080/02841860152619089&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=11765061&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000172331900003&link_type=ISI) 46. 46. Derheimer FA, Kastan MB. Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett. 2010; 584: 3675–81. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.febslet.2010.05.031&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=20580718&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000281161100002&link_type=ISI) 47. 47. Yin B, Savic V, Bassing CH. ATM prevents unattended DNA double strand breaks on site and in generations to come. Cancer Biol Ther. 2007; 6: 1837–9. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18087222&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 48. 48. Lavin MF, Kozlov S. ATM activation and DNA damage response. Cell Cycle. 2007; 6: 931–42. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.4161/cc.6.8.4180&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=17457059&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000245948300012&link_type=ISI) 49. 49. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA. 1992; 89: 7491–5. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMDoiODkvMTYvNzQ5MSI7czo0OiJhdG9tIjtzOjE4OiIvY2JtLzE1LzMvMjEwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 50. 50. Khanna KK, Lavin MF. Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene. 1993; 8: 3307–12. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=8247533&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=A1993MG78200014&link_type=ISI) 51. 51. Kastan MB, Zhan QM, El-Deiry WS, Carrier F, Jacks T, Walsh WV, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and *GADD45* is defective in ataxia-telangiectasia. Cell. 1992; 71: 587–97. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/0092-8674(92)90593-2&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=1423616&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=A1992JY67600007&link_type=ISI) 52. 52. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997; 387: 296–9. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/387296a0&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=9153395&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=A1997WZ16700056&link_type=ISI) 53. 53. Kubbutat MHG, Vousden KH. Keeping an old friend under control: regulation of p53 stability. Mol Med Today. 1998; 4: 250–6. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/S1357-4310(98)01260-X&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=9679243&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000074345200010&link_type=ISI) 54. 54. Maya R, Balass M, Kim ST, Shkedy D, Leal JFM, Shifman O, et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 2001; 15: 1067–77. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiZ2VuZXNkZXYiO3M6NToicmVzaWQiO3M6OToiMTUvOS8xMDY3IjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 55. 55. Khanna KK, Keating KE, Kozlov S, Scott S, Gatei M, Hobson K, et al. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat Genet. 1998; 20: 398–400. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/3882&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=9843217&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000077199600032&link_type=ISI) 56. 56. Meulmeester E, Pereg Y, Shiloh Y, Jochemsen AG. ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Cell Cycle. 2005; 4: 1166–70. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.4161/cc.4.9.1981&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=16082221&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000231512900011&link_type=ISI) 57. 57. Stommel JM, Wahl GM. Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J. 2004; 23: 1547–56. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiZW1ib2pubCI7czo1OiJyZXNpZCI7czo5OiIyMy83LzE1NDciO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 58. 58. Pereg Y, Shkedy D, De Graaf P, Meulmeester E, Edelson-Averbukh M, Salek M, et al. Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage. Proc Natl Acad Sci USA. 2005; 102: 5056–61. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiMTAyLzE0LzUwNTYiO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 59. 59. Kubota E, Williamson CT, Ye RQ, Elegbede A, Peterson L, Lees-Miller SP, et al. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines. Cell Cycle. 2014; 13: 2129–37. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.4161/cc.29212&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=24841718&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 60. 60. Malmer BS, Feychting M, Lönn S, Lindström S, Grönberg H, Ahlbom A, et al. Genetic variation in p53 and ATM haplotypes and risk of glioma and meningioma. J Neurooncol. 2007; 82: 229–37. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/s11060-006-9275-1&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=17151932&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 61. 61. Kheirollahi M, Mehr-Azin M, Kamalian N, Mehdipour P. Expression of cyclin D2, P53, Rb and ATM cell cycle genes in brain tumors. Med Oncol. 2011; 28: 7–14. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/s12032-009-9412-8&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=20077038&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 62. 62. Baross A, Schertzer M, Zuyderduyn SD, Jones SJM, Marra MA, Lansdorp PM. Effect of *TERT* and *ATM* on gene expression profiles in human fibroblasts. Genes Chromosomes Cancer. 2004; 39: 298–310. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1002/gcc.20006&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=14978791&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 63. 63. Angèle S, Treilleux I, Tanière P, Martel-Planche G, Vuillaume M, Bailly C, et al. Abnormal expression of the *ATM* and *TP53* genes in sporadic breast carcinomas. Clin Cancer Res. 2000; 6: 3536–44. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6ODoiNi85LzM1MzYiO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 64. 64. Abdel-Fatah TMA, Arora A, Alsubhi N, Agarwal D, Moseley PM, Perry C, et al. Clinicopathological significance of ATM-Chk2 expression in sporadic breast cancers: a comprehensive analysis in large cohorts. Neoplasia. 2014; 16: 982–91. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.neo.2014.09.009&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=25425972&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 65. 65. Concannon P, Haile RW, Børresen-Dale AL, Rosenstein BS, Gatti RA, Teraoka SN, et al. Variants in the ATM gene associated with a reduced risk of contralateral breast cancer. Cancer Res. 2008; 68: 6486–91. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI2OC8xNi82NDg2IjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 66. 66. El-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, et al. *WAF1*/*CIP1* is induced in *p53*-mediated G1 arrest and apoptosis. Cancer Res. 1994; 54: 1169–74. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjk6IjU0LzUvMTE2OSI7czo0OiJhdG9tIjtzOjE4OiIvY2JtLzE1LzMvMjEwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 67. 67. Mehdipour P, Karami F, Javan F, Mehrazin M. Linking ATM promoter methylation to cell cycle protein expression in brain tumor patients: cellular molecular triangle correlation in ATM territory. Mol Neurobiol. 2015; 52: 293–302. 68. 68. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ. Ataxia telangiectasia-mutated phosphorylates Chk2 *in vivo* and *in vitro*. Proc Natl Acad Sci USA. 2000; 97: 10389–94. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiOTcvMTkvMTAzODkiO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 69. 69. Melchionna R, Chen XB, Blasina A, McGowan CH. Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat Cell Biol. 2000; 2: 762–5. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/35036406&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=11025670&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000089697000025&link_type=ISI) 70. 70. Falck J, Mailand N, Syljuåsen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001; 410: 842–7. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/35071124&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=11298456&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000168021900062&link_type=ISI) 71. 71. Mehdipour P, Pirouzpanah S, Sarafnejad A, Atri M, Shahrestani TS, Haidari M. Prognostic implication of CDC25A and cyclin E expression on primary breast cancer patients. Cell Biol Int. 2009; 33: 1050–6. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.cellbi.2009.06.016&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=19555767&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 72. 72. Yamashita Y, Kasugai I, Sato M, Tanuma N, Sato I, Nomura M, et al. CDC25A mRNA levels significantly correlate with Ki-67 expression in human glioma samples. J Neurooncol. 2010; 100: 43–9. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/s11060-010-0147-3&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=20217459&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 73. 73. Guleria A, Chandna S. ATM kinase: much more than a DNA damage responsive protein. DNA Repair. 2016; 39: 1–20. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.dnarep.2015.12.009&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=26777338&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 74. 74. Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet. 2002; 30: 285–9. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/ng837&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=11836499&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000174157600012&link_type=ISI) 75. 75. Yu XC, Fu S, Lai MY, Baer R, Chen JJ. BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev. 2006; 20: 1721–6. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiZ2VuZXNkZXYiO3M6NToicmVzaWQiO3M6MTA6IjIwLzEzLzE3MjEiO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 76. 76. Lavin MF. ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene. 2007; 26: 7749–58. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/sj.onc.1210880&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18066087&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000251537900005&link_type=ISI) 77. 77. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 2003; 22: 5612–21. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiZW1ib2pubCI7czo1OiJyZXNpZCI7czoxMDoiMjIvMjAvNTYxMiI7czo0OiJhdG9tIjtzOjE4OiIvY2JtLzE1LzMvMjEwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 78. 78. Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev. 2004; 18: 1423–38. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiZ2VuZXNkZXYiO3M6NToicmVzaWQiO3M6MTA6IjE4LzEyLzE0MjMiO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 79. 79. Lim DS, Kim ST, Xu B, Maser RS, Lin JY, Petrini JH, et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature. 2000; 404: 613–7. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/35007091&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=10766245&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000086400100056&link_type=ISI) 80. 80. Lee JH, Paull TT. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene. 2007; 26: 7741–8. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/sj.onc.1210872&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18066086&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000251537900004&link_type=ISI) 81. 81. Awasthi P, Foiani M, Kumar A. ATM and ATR signaling at a glance. J Cell Sci. 2015; 128: 4255–62. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NToiam9jZXMiO3M6NToicmVzaWQiO3M6MTE6IjEyOC8yMy80MjU1IjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 82. 82. Jazayeri A, Balestrini A, Garner E, Haber JE, Costanzo V. Mre11-Rad50-Nbs1-dependent processing of DNA breaks generates oligonucleotides that stimulate ATM activity. EMBO J. 2008; 27: 1953–62. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiZW1ib2pubCI7czo1OiJyZXNpZCI7czoxMDoiMjcvMTQvMTk1MyI7czo0OiJhdG9tIjtzOjE4OiIvY2JtLzE1LzMvMjEwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 83. 83. Lee JH, Mand MR, Deshpande RA, Kinoshita E, Yang SH, Wyman C, et al. Ataxia telangiectasia-mutated (ATM) kinase activity is regulated by ATP-driven conformational changes in the Mre11/Rad50/Nbs1(MRN) complex. J Biol Chem. 2013; 288: 12840–51. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyODgvMTgvMTI4NDAiO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 84. 84. Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 2005; 434: 605–11. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/nature03442&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=15758953&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000228011000036&link_type=ISI) 85. 85. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001; 276: 42462–7. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyNzYvNDUvNDI0NjIiO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 86. 86. Stucki M, Jackson SP. MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes. DNA Repair. 2004; 3: 953–7. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.dnarep.2004.03.007&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=15279781&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 87. 87. Lukas C, Melander F, Stucki M, Falck J, Bekker-Jensen S, Goldberg M, et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J. 2004; 23: 2674–83. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiZW1ib2pubCI7czo1OiJyZXNpZCI7czoxMDoiMjMvMTMvMjY3NCI7czo0OiJhdG9tIjtzOjE4OiIvY2JtLzE1LzMvMjEwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 88. 88. Liu R, Page M, Solheim K, Fox S, Chang SM. Quality of life in adults with brain tumors: current knowledge and future directions. Neuro-Oncology. 2009; 11: 330–9. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1215/15228517-2008-093&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=19001097&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000267132300012&link_type=ISI) 89. 89. Huen MSY, Grant R, Manke I, Minn K, Yu XC, Yaffe MB, et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell. 2007; 131: 901–14. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.cell.2007.09.041&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18001825&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000251800900013&link_type=ISI) 90. 90. Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science. 2007; 318: 1637–40. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzMTgvNTg1Ni8xNjM3IjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 91. 91. Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell. 2007; 131: 887–900. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.cell.2007.09.040&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18001824&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000251800900012&link_type=ISI) 92. 92. Lavin MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol. 2008; 9: 759–69. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/nrm2514&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18813293&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000259402800010&link_type=ISI) 93. 93. Guo Z, Deshpande R, Paull TT. ATM activation in the presence of oxidative stress. Cell Cycle. 2010; 9: 4805–11. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.4161/cc.9.24.14323&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=21150274&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000285343400015&link_type=ISI) 94. 94. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress. Science. 2010; 330: 517–21. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzMzAvNjAwMy81MTciO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 95. 95. Iwahori S, Kohmon D, Kobayashi J, Tani Y, Yugawa T, Komatsu K, et al. ATM regulates Cdt1 stability during the unperturbed S phase to prevent re-replication. Cell Cycle. 2014; 13: 471–81. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.4161/cc.27274&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=24280901&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 96. 96. Masai H. ATM in prevention of genomic instability. Cell Cycle. 2014; 13: 882–3. 97. 97. Heikkinen K, Rapakko K, Karppinen SM, Erkko H, Nieminen P, Winqvist R. Association of common *ATM* polymorphism with bilateral breast cancer. Int J Cancer. 2005; 116: 69–72. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1002/ijc.20996&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=15756685&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000229766100010&link_type=ISI) 98. 98. Tommiska J, Jansen L, Kilpivaara O, Edvardsen H, Kristensen V, Tamminen A, et al. *ATM* variants and cancer risk in breast cancer patients from Southern Finland. BMC Cancer. 2006; 6: 209. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1186/1471-2407-6-209&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=16914028&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 99. 99. Allinen M, Launonen V, Laake K, Jansen L, Huusko P, Kääriäinen H, et al. *ATM* mutations in Finnish breast cancer patients. J Med Genet. 2002; 39: 192–6. [FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6OToiam1lZGdlbmV0IjtzOjU6InJlc2lkIjtzOjg6IjM5LzMvMTkyIjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 100.100. Määttä K, Rantapero T, Lindström A, Nykter M, Kankuri-Tammilehto M, Laasanen SL, et al. Whole-exome sequencing of Finnish hereditary breast cancer families. Eur J Hum Genet. 2017; 25: 85–93. 101.101. Chenevix-Trench G, Spurdle AB, Gatei M, Kelly H, Marsh A, Chen XQ, et al. Dominant negative ATM mutations in breast cancer families. J Natl Cancer Inst. 2002; 94: 205–15. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1093/jnci/94.3.205&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=11830610&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000173608800011&link_type=ISI) 102.102. Dombernowsky SL, Weischer M, Allin KH, Bojesen SE, Tybjjrg-Hansen A, Nordestgaard BG. Risk of cancer by *ATM* missense mutations in the general population. J Clin Oncol. 2008; 26: 3057–62. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNvIjtzOjU6InJlc2lkIjtzOjEwOiIyNi8xOC8zMDU3IjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 103.103. Laake K, Vu P, Andersen T, Erikstein B, Kåresen R, Lønning PE, et al. Screening breast cancer patients for Norwegian *ATM* mutations. Br Cancer Res. 2000; 83: 1650–3. 104.104. Broeks A, Braaf LM, Huseinovic A, Schmidt MK, Russell NS, Van Leeuwen FE, et al. The spectrum of *ATM* missense variants and their contribution to contralateral breast cancer. Breast Cancer Res Treat. 2008; 107: 243–8. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/s10549-007-9543-6&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=17393301&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000251640900008&link_type=ISI) 105.105. Broeks A, Urbanus JHM, Floore AN, Dahler EC, Klijn JGM, Rutgers EJT, et al. *ATM*-heterozygous germline mutations contribute to breast cancer-susceptibility. Am J Hum Genet. 2000; 66: 494–500. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1086/302746&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=10677309&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000088373100016&link_type=ISI) 106.106. Broeks A, Urbanus JHM, De Knijff P, Devilee P, Nicke M, Klöpper K, et al. IVS10-6T>G, an ancient ATM germline mutation linked with breast cancer. Hum Mutat. 2003; 21: 521–8. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1002/humu.10204&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=12673794&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 107.107. Gutiérrez-Enríquez S, Fernet M, Dörk T, Bremer M, Lauge A, Stoppa-Lyonnet D, et al. Functional consequences of *ATM* sequence variants for chromosomal radiosensitivity. Genes Chromosomes Cancer. 2004; 40: 109–19. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1002/gcc.20025&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=15101044&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000221154800003&link_type=ISI) 108.108. Fletcher O, Johnson N, Dos Santos Silva I, Orr N, Ashworth A, Nevanlinna H, et al. Missense variants in *ATM* in 26,101 breast cancer cases and 29,842 controls. Cancer Epidemiol Biomarkers Prev. 2010; 19: 2143–51. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiY2VicCI7czo1OiJyZXNpZCI7czo5OiIxOS85LzIxNDMiO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 109.109. Schrauder M, Frank S, Strissel P, Lux MP, Bani MR, Rauh C, et al. Single nucleotide polymorphism D1853N of the *ATM* gene may alter the risk for breast cancer. J Cancer Res Clin Oncol. 2008; 134: 873–82. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/s00432-008-0355-9&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18264724&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000256430100006&link_type=ISI) 110.110. Angèle S, Romestaing P, Moullan N, Vuillaume M, Chapot B, Friesen M, et al. ATM Haplotypes and cellular response to DNA damage: association with breast cancer risk and clinical radiosensitivity. Cancer Res. 2003; 63: 8717–25. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI2My8yNC84NzE3IjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 111.111. Rodriguez C, Vallès H, Causse A, Johannsdottir V, Eliaou JF, Theillet C. Involvement of *ATM* missense variants and mutations in a series of unselected breast cancer cases. Genes Chromosomes Cancer. 2002; 33: 141–9. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1002/gcc.1222&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=11793440&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 112.112. Vořechovský I, Rasio D, Luo PL, Monaco C, Hammarström L, Webster ADB, et al. The *ATM* gene and susceptibility to breast cancer: analysis of 38 breast tumors reveals no evidence for mutation. Cancer Res. 1996; 56: 2726–32. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjEwOiI1Ni8xMi8yNzI2IjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 113.113. Brunet J, Gutiérrez-Enríquez S, Torres A, Bérez V, Sanjosé S, Galceran J, et al. *ATM* germline mutations in Spanish early-onset breast cancer patients negative for *BRCA1*/*BRCA2* mutations. Clin Genet. 2008; 73: 465–73. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1111/j.1399-0004.2008.00987.x&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18384426&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 114.114. Bogdanova N, Cybulski C, Bermisheva M, Datsyuk I, Yamini P, Hillemanns P, et al. A nonsense mutation (E1978X) in the *ATM* gene is associated with breast cancer. Breast Cancer Res Treat. 2009; 118: 207–11. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/s10549-008-0189-9&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18807267&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 115.115. Stredrick DL, Garcia-Closas M, Pineda MA, Bhatti P, Alexander BH, Doody MM, et al. The *ATM* missense mutation p.Ser49Cys (c.146C>G) and the risk of breast cancer. Human Mutat. 2006; 27: 538–44. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1002/humu.20323&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=16652348&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000237868600005&link_type=ISI) 116.116. Sokolenko AP, Bogdanova N, Kluzniak W, Preobrazhenskaya EV, Kuligina ES, Iyevleva AG, et al. Double heterozygotes among breast cancer patients analyzed for *BRCA1*, *CHEK2*, *ATM*, *NBN*/*NBS1*, and BLM germ-line mutations. Breast Cancer Res Treat. 2014; 145: 553–62. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/s10549-014-2971-1&link_type=DOI) 117.117. Soukupova J, Dundr P, Kleibl Z, Pohlreich P. Contribution of mutations in ATM to breast cancer development in the Czech population. Oncol Rep. 2008; 19: 1505–10. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18497957&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 118.118. Maillet P, Bonnefoi H, Vaudan-Vutskits G, Pajk B, Cufer T, Foulkes WD, et al. Constitutional alterations of the *ATM* gene in early onset sporadic breast cancer. J Med Genet. 2002; 39: 751–3. [FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6OToiam1lZGdlbmV0IjtzOjU6InJlc2lkIjtzOjk6IjM5LzEwLzc1MSI7czo0OiJhdG9tIjtzOjE4OiIvY2JtLzE1LzMvMjEwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 119.119. Szabo CI, Schutte M, Broeks A, Houwing-Duistermaat JJ, Thorstenson YR, Durocher F, et al. Are *ATM* mutations 7271T→G and IVS10-6T→G really high-risk breast cancer-susceptibility alleles?. Cancer Res. 2004; 64: 840–3. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjg6IjY0LzMvODQwIjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 120.120. Pop LA, Cojocneanu-Petric RM, Pileczki V, Morar-Bolba G, Irimie A, Lazar V, et al. Genetic alterations in sporadic triple negative breast cancer. Breast. 2018; 38: 30–8. 121.121. Bretsky P, Haiman CA, Gilad S, Yahalom J, Grossman A, Paglin S, et al. The relationship between twenty missense *ATM* variants and breast cancer risk: the Multiethnic Cohort. Cancer Epidemiol Biomarkers Prev. 2003; 12: 733–8. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiY2VicCI7czo1OiJyZXNpZCI7czo4OiIxMi84LzczMyI7czo0OiJhdG9tIjtzOjE4OiIvY2JtLzE1LzMvMjEwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 122.122. Hirsch AE, Atencio DP, Rosenstein BS. Screening for *ATM* sequence alterations in African-American women diagnosed with breast cancer. Breast Cancer Res Treat. 2008; 107: 139–44. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=17333338&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 123.123. Buchholz TA, Weil MM, Ashorn CL, Strom EA, Sigurdson A, Bondy M, et al. A Ser49Cys variant in the ataxia telangiectasia, mutated, gene that is more common in patients with breast carcinoma compared with population controls. Cancer. 2004; 100: 1345–51. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1002/cncr.20133&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=15042666&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000220341000004&link_type=ISI) 124.124. Zhang B, Beeghly-Fadiel A, Long JR, Zheng W. Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol. 2011; 12: 477–88. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/S1470-2045(11)70076-6&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=21514219&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000291143000025&link_type=ISI) 125.125. González-Hormazábal P, Bravo T, Blanco R, Valenzuela CY, Gómez F, Waugh E, et al. Association of common *ATM* variants with familial breast cancer in a South American population. BMC Cancer. 2008; 8: 117. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18433505&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 126.126. Tapia T, Sanchez A, Vallejos M, Alvarez C, Moraga M, Smalley S, et al. ATM allelic variants associated to hereditary breast cancer in 94 Chilean women: susceptibility or ethnic influences?. Breast Cancer Res Treat. 2008; 107: 281–8. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/s10549-007-9544-5&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=17351744&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000251640900013&link_type=ISI) 127.127. Del Carmen Calderón-Zúñiga F, Ocampo-Gómez G, López-Márquez FC, Recio-Vega R, Serrano-Gallardo LB, Ruiz-Flores P. ATM polymorphisms IVS24-9delT, IVS38-8T>C, and 5557G>A in Mexican women with familial and/or early-onset breast cancer. Salud Pública Méx. 2014; 56: 206–12. 128.128. Teraoka SN, Malone KE, Doody DR, Suter NM, Ostrander EA, Daling JR, et al. Increased frequency of *ATM* mutations in breast carcinoma patients with early onset disease and positive family history. Cancer. 2001; 92: 479–87. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1002/1097-0142(20010801)92:3<479::AID-CNCR1346>3.0.CO;2-G&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=11505391&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000170303700004&link_type=ISI) 129.129. Iannuzzi CM, Atencio DP, Green S, Stock RG, Rosenstein BS. *ATM* mutations in female breast cancer patients predict for an increase in radiation-induced late effects. Int J Radiat Oncol Biol Phys. 2002; 52: 606–13. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/S0360-3016(01)02684-0&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=11849780&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000173999400004&link_type=ISI) 130.130. Goldgar DE, Healey S, Dowty JG, Da Silva L, Chen XQ, Spurdle AB, et al. Rare variants in the *ATM* gene and risk of breast cancer. Breast Cancer Res. 2011; 13: R73. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1186/bcr2919&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=21787400&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 131.131. Bernstein JL, Bernstein L, Thompson WS, Lynch CF, Malone KE, Teitelbaum SL, et al. ATM variants 7271T>G and IVS10-6T>G among women with unilateral and bilateral breast cancer. Br J Cancer. 2003; 89: 1513–6. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/sj.bjc.6601289&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=14562025&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000186189300023&link_type=ISI) 132.132. Bernstein JL, Teraoka S, Southey MC, Jenkins MA, Andrulis IL, Knight JA, et al. Population-based estimates of breast cancer risks associated with *ATM* gene variants c.7271T>G and c.1066-6T>G (IVS10-6T>G) from the Breast Cancer Family Registry. Hum Mutat. 2006; 27: 1122–8. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1002/humu.20415&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=16958054&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000241529500007&link_type=ISI) 133.133. FitzGerald MG, Bean JM, Hegde SR, Unsal H, MacDonald DJ, Harkin DP, et al. Heterozygous *ATM* mutations do not contribute to early onset of breast cancer. Nat Genet. 1997; 15: 307–10. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/ng0397-307&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=9054948&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=A1997WK38600025&link_type=ISI) 134.134. Sommer SS, Buzin CH, Jung M, Zheng J, Liu Q, Jeong SJ, et al. Elevated frequency of *ATM* gene missense mutations in breast cancer relative to ethnically matched controls. Cancer Genet Cytogenet. 2002; 134: 25–32. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/S0165-4608(01)00594-5&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=11996792&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 135.135. Sommer SS, Jiang ZF, Feng JN, Buzin CH, Zheng J, Longmate J, et al. *ATM* missense mutations are frequent inpatients with breast cancer. Cancer Genet Cytogenet. 2003; 145: 115–20. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/S0165-4608(03)00119-5&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=12935922&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000185059700004&link_type=ISI) 136.136. Thompson D, Antoniou AC, Jenkins M, Marsh A, Chen XQ, Wayne T, et al. Two *ATM* variants and breast cancer risk. Hum Mutat. 2005; 25: 594–5. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=15880680&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 137.137. Spurdle AB, Hopper JL, Chen XQ, McCredie MRE, Giles GG, Newman B, et al. No evidence for association of ataxia-telangiectasia mutated gene T2119C and C3161G amino acid substitution variants with risk of breast cancer. Breast Cancer Res. 2002; 4: R15. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1186/bcr534&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=12473176&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 138.138. Lindeman GJ, Hiew M, Visvader JE, Leary J, Field M, Gaff CL, et al. Frequency of the *ATM* IVS10-6T→G variant in Australian multiple-case breast cancer families. Breast Cancer Res. 2004; 6: R401. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=15217508&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 139.139. Marsh A, Healey S, Lewis A, Spurdle AB, Kedda MA, Khanna KK, et al. Mutation analysis of five candidate genes in familial breast cancer. Breast Cancer Res Treat. 2007; 105: 377–89. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/s10549-006-9461-z&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=17187232&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000249806200015&link_type=ISI) 140.140. Waddell N, Jonnalagadda J, Marsh A, Grist S, Jenkins M, Hobson K, et al. Characterization of the breast cancer associated *ATM* 7271T>G (V2424G) mutation by gene expression profiling. Genes Chromosomes Cancer. 2006; 45: 1169–81. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1002/gcc.20381&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=17001622&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 141.141. Mehdipour P, Mahdavi M, Mohammadi-Asl J, Atri M. Importance of ATM gene as a susceptible trait: predisposition role of D1853N polymorphism in breast cancer. Med Oncol. 2011; 28: 733–7. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=20396981&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 142.142. Ye ZC, Dai Q, Lu W, Cai QY, Zheng Y, Shu XO, et al. Two-stage case-control study of common *ATM* gene variants in relation to breast cancer risk. Breast Cancer Res Treat. 2007; 106: 121–6. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/s10549-006-9473-8&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=17431766&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000249813100014&link_type=ISI) 143.143. Lee KM, Choi JY, Park SK, Chung HW, Ahn B, Yoo KY, et al. Genetic polymorphisms of ataxia telangiectasia mutated and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2005; 14: 821–5. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiY2VicCI7czo1OiJyZXNpZCI7czo4OiIxNC80LzgyMSI7czo0OiJhdG9tIjtzOjE4OiIvY2JtLzE1LzMvMjEwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 144.144. Tavtigian SV, Oefner PJ, Babikyan D, Hartmann A, Healey S, Le Calvez-Kelm F, et al. Rare, evolutionarily unlikely missense substitutions in *ATM* confer increased risk of breast cancer. Am J Hum Genet. 2009; 85: 427–46. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.ajhg.2009.08.018&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=19781682&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000270836000001&link_type=ISI) 145.145. Ding H, Mao C, Li SM, Liu Q, Lin L, Chen Q. Lack of association between *ATM* C.1066-6T>G mutation and breast cancer risk: a meta-analysis of 8,831 cases and 4,957 controls. Breast Cancer Res Treat. 2011; 125: 476–7. 146.146. Gao LB, Pan XM, Sun H, Wang X, Rao L, Li LJ, et al. The association between *ATM* D1853N polymorphism and breast cancer susceptibility: a meta-analysis. J Exp Clin Cancer Res. 2010; 29: 117. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=20799949&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 147.147. Youlden DR, Cramb SM, Yip CH, Baade PD. Incidence and mortality of female breast cancer in the Asia-Pacific region. Cancer Biol Med. 2014; 11: 101–15. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiY2JtIjtzOjU6InJlc2lkIjtzOjg6IjExLzIvMTAxIjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 148.148. Bozhanov SS, Angelova SG, Krasteva ME, Markov TL, Christova SL, Gavrilov IG, et al. Alterations in *p53*, *BRCA1*, *ATM*, *PIK3CA*, and *HER2* genes and their effect in modifying clinicopathological characteristics and overall survival of Bulgarian patients with breast cancer. J Cancer Res Clin Onco. 2010; 136: 1657–69. 149.149. Thorstenson YR, Shen PD, Tusher VG, Wayne TL, Davis RW, Chu G, et al. Global analysis of *ATM* polymorphism reveals significant functional constraint. Am J Hum Genet. 2001; 69: 396–412. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1086/321296&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=11443540&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000170108200014&link_type=ISI) 150.150. Xiong HH, Liao ZX, Liu ZS, Xu T, Wang QM, Liu HL, et al. *ATM* polymorphisms predict severe radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol Biol Phys. 2013; 85: 1066–73. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.ijrobp.2012.09.024&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=23154078&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 151.151. Oliveira S, Ribeiro J, Sousa H, Pinto D, Baldaque I, Medeiros R. Genetic polymorphisms and cervical cancer development: ATM G5557A and p53bp1 C1236G. Oncol Rep. 2012; 27: 1188–92. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=22200742&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 152.152. Mehdipour P, Habibi L, Mohammadi-Asl J, Kamalian N, Azin MM. Three-hit hypothesis in astrocytoma: tracing the polymorphism D1853N in ATM gene through a pedigree of the proband affected with primary brain tumor. J Cancer Res Clin Oncol. 2008; 134: 1173–80. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18465141&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 153.153. Berntsson SG, Wibom C, Sjöström S, Henriksson R, Brännström T, Broholm H, et al. Analysis of DNA repair gene polymorphisms and survival in low-grade and anaplastic gliomas. J Neurooncol. 2011; 105: 531–8. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=21643987&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 154.154. Zhao P, Zou P, Zhao L, Yan W, Kang CS, Jiang T, et al. Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility. BMC Cancer. 2013; 13: 234. 155.155. Wang HC, Chang WS, Tsai RY, Tsai CW, Liu LC, Su CH, et al. Association between ataxia telangiectasia mutated gene polymorphisms and breast cancer in Taiwanese females. Anticancer Res. 2010; 30: 5217–21. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImFudGljYW5yZXMiO3M6NToicmVzaWQiO3M6MTA6IjMwLzEyLzUyMTciO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 156.156. Chen T, Dong BR, Lu ZC, Tian BC, Zhang J, Zhou JL, et al. A functional single nucleotide polymorphism in promoter of ATM is associated with longevity. Mech Ageing Dev. 2010; 131: 636–40. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.mad.2010.08.009&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=20816691&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 157.157. Khalil HS, Tummala H, Hupp TR, Zhelev N. Pharmacological inhibition of ATM by KU55933 stimulates ATM transcription. Exp Biol Med. 2012; 237: 622–34. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1258/ebm.2012.011378&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=22728709&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 158.158. Zhang HS, Liu YH, Zhou KK, Zhou CC, Zhou RK, Cheng CX, et al. Genetic variations in the homologous recombination repair pathway genes modify risk of glioma. J Neurooncol. 2016; 126: 11–7. 159.159. Adel Fahmideh M, Lavebratt C, Schüz J, Röösli M, Tynes T, Grotzer MA, et al. Common genetic variations in cell cycle and DNA repair pathways associated with pediatric brain tumor susceptibility. Oncotarget. 2016; 7: 63640–50. 160.160. Maher EA, Mietz J, Arteaga CL, DePinho RA, Mohla S. Brain metastasis: opportunities in basic and translational research. Cancer Res. 2009; 69: 6015–20. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1158/0008-5472.SABCS-6015&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=19638593&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 161.161. Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS. Breast cancer metastasis to the central nervous system. Am J Pathol. 2005; 167: 913–20. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/S0002-9440(10)61180-7&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=16192626&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000232242400001&link_type=ISI) 162.162. Tosoni A, Franceschi E, Brandes AA. Chemotherapy in breast cancer patients with brain metastases: have new chemotherapic agents changed the clinical outcome?. Crit Rev Oncol Hematol. 2008; 68: 212–21. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.critrevonc.2008.04.004&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=18550383&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000261251400003&link_type=ISI) 163.163. Viadana E, Cotter R, Pickren JW, Bross ID. An autopsy study of metastatic sites of breast cancer. Cancer Res. 1973; 33: 179–81. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiY2FucmVzIjtzOjU6InJlc2lkIjtzOjg6IjMzLzEvMTc5IjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 164.164. Gavrilovic IT, Posner JB. Brain metastases: epidemiology and pathophysiology. J Neurooncol. 2005; 75: 5–14. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/s11060-004-8093-6&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=16215811&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 165.165. Horner MJ, Ries LAG, Krapcho M, Neyman N, Aminou R, Howlader N, et al. SEER Cancer Statistics Review, 1975-2006. Bethesda, MD: National Cancer Institute. 2009. 166.166. Gachechiladze M, Uberall I, Kolek V, Klein J, Krejci V, Stastna J, et al. Correlation between BRCA1 expression and clinicopathological factors including brain metastases in patients with non-small-cell lung cancer. Biomed Pap. 2013; 157: 227–32. 167.167. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000; 14: 927–39. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiZ2VuZXNkZXYiO3M6NToicmVzaWQiO3M6ODoiMTQvOC85MjciO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 168.168. Pietschmann A, Mehdipour P, Atri M, Hofmann W, Hosseini-Asl SS, Scherneck S, et al. Mutation analysis of *BRCA1* and *BRCA2* genes in Iranian high risk breast cancer families. J Cancer Res Clin Oncol. 2005; 131: 552–8. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/s00432-005-0678-8&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=15918047&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 169.169. Balendran S, Liebmann-Reindl S, Berghoff A, Reischer T, Popitsch N, Geier CB, et al. Next-generation sequencing-based genomic profiling of brain metastases of primary ovarian cancer identifies high number of BRCA-mutations. J Neurooncol. 2017; 133: 469–76. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=28497333&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 170.170. Salhia B, Kiefer J, Ross JTD, Metapally R, Martinez RA, Johnson KN, et al. Integrated genomic and epigenomic analysis of breast cancer brain metastasis. PLoS One. 2014; 9: e85448. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1371/journal.pone.0085448&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=24489661&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 171.171. Bai JW, Li YC, Zhang GJ. Cell cycle regulation and anticancer drug discovery. Cancer Biol Med. 2017; 14: 348–62. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiY2JtIjtzOjU6InJlc2lkIjtzOjg6IjE0LzQvMzQ4IjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 172.172. Su M, Yin ZH, Wu W, Li XL, Zhou BS. Meta-analysis of associations between ATM Asp1853Asn and TP53 Arg72Pro polymorphisms and adverse effects of cancer radiotherapy. Asian Pac J Cancer Prev. 2014; 15: 10675–81. 173.173. Narayan RS, Gasol A, Slangen PLG, Cornelissen FMG, Lagerweij T, Veldman HYYE, et al. Identification of MEK162 as a radiosensitizer for the treatment of glioblastoma. Mol Cancer Ther. 2018; 17: 347–54. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6Im1vbGNhbnRoZXIiO3M6NToicmVzaWQiO3M6ODoiMTcvMi8zNDciO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 174.174. Li Y, Li LC, Li B, Wu ZJ, Wu YZ, Wang Y, et al. Silencing of ataxia-telangiectasia mutated by siRNA enhances the in vitro and in vivo radiosensitivity of glioma. Oncol Rep. 2016; 35: 3303312. 175.175. Li Y, Li LC, Wu ZJ, Wang LL, Wu YZ, Li DR, et al. Silencing of ATM expression by siRNA technique contributes to glioma stem cell radiosensitivity *in vitro* and *in vivo*. Oncol Rep. 2017; 38: 325–35. 176.176. Sinha S, Ghildiyal R, Mehta VS, Sen E. ATM-NFκB axis-driven TIGAR regulates sensitivity of glioma cells to radiomimetics in the presence of TNF*α*. Cell Death Dis. 2013; 4: e615. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1038/cddis.2013.128&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=23640457&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 177.177. Ai LB, Vo QN, Zuo CL, Li LW, Ling WH, Suen JY, et al. Ataxia-telangiectasia-mutated (*ATM*) gene in head and neck squamous cell carcinoma: promoter hypermethylation with clinical correlation in 100 cases. Cancer Epidemiol Biomarkers Prev. 2004; 13: 150–6. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiY2VicCI7czo1OiJyZXNpZCI7czo4OiIxMy8xLzE1MCI7czo0OiJhdG9tIjtzOjE4OiIvY2JtLzE1LzMvMjEwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 178.178. Roy K, Wang LL, Makrigiorgos GM, Price BD. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity. Biochem Biophys Res Commun. 2006; 344: 821–6. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1016/j.bbrc.2006.03.222&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=16631604&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) [Web of Science](http://www.cancerbiomed.org/lookup/external-ref?access_num=000237585000018&link_type=ISI) 179.179. Yang H, Yoon SJ, Jin J, Choi SH, Seol HJ, Lee JI, et al. Inhibition of checkpoint kinase 1 sensitizes lung cancer brain metastases to radiotherapy. Biochem Biophys Res Commun. 2011; 406: 53–8. [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=21291864&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 180.180. Choi M, Kipps T, Kurzrock R. ATM mutations in cancer: therapeutic implications. Mol Cancer Ther. 2016; 15: 1781–91. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6Im1vbGNhbnRoZXIiO3M6NToicmVzaWQiO3M6OToiMTUvOC8xNzgxIjtzOjQ6ImF0b20iO3M6MTg6Ii9jYm0vMTUvMy8yMTAuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 181.181. Byrski T, Huzarski T, Dent R, Marczyk E, Jasiówka M, Gronwald J, et al. Pathologic complete response to neoadjuvant cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat. 2014; 147: 401–5. [CrossRef](http://www.cancerbiomed.org/lookup/external-ref?access_num=10.1007/s10549-014-3100-x&link_type=DOI) [PubMed](http://www.cancerbiomed.org/lookup/external-ref?access_num=25129345&link_type=MED&atom=%2Fcbm%2F15%2F3%2F210.atom) 182.182. Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, Rendi MH, et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014; 20: 764–75. [Abstract/FREE Full Text](http://www.cancerbiomed.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6ODoiMjAvMy83NjQiO3M6NDoiYXRvbSI7czoxODoiL2NibS8xNS8zLzIxMC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 183.183. Fann LY, Chen Y, Chu DC, Weng SJ, Chu HC, Wu AT, et al. Identification and preclinical evaluation of the small molecule, NSC745887, for treating glioblastomas via suppressing DcR3-associated signaling pathways. Oncotarget. 2018; 9: 11922–37.